Extracting the Forest Type From Remote Sensing Images by Random Forest
Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low accuracy of extracting the information of forest types from high-resolution remote sensing images and the lack of an effective identification method...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2021-08, Vol.21 (16), p.17447-17454 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17454 |
---|---|
container_issue | 16 |
container_start_page | 17447 |
container_title | IEEE sensors journal |
container_volume | 21 |
creator | Linhui, Li Weipeng, Jing Huihui, Wang |
description | Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low accuracy of extracting the information of forest types from high-resolution remote sensing images and the lack of an effective identification method. The GF-2 remote sensing image in the Laoshan construction area of the Maoershan Forest Farm, Heilongjiang Province was as the data source, supplemented by aerial RGB images with a resolution of 0.2 m and the second type inventory of forest resources data. Considering the spatial characteristics of the spectrum, texture, vegetation index, terrain, multiscale segmentation was performed, the optimal feature space was constructed, and the number of decision trees was estimated. In this manner, an object-oriented random forest (RF) scheme was established. Comparative experiments were performed using the support vector machine(SVM) classifier. The experimental results indicated that the overall accuracy and kappa coefficient of the proposed method was 83.16% and 79.86%, respectively, higher than those of the SVM classification method. These findings demonstrated that the proposed method can effectively increase the classification accuracy of forest types. |
doi_str_mv | 10.1109/JSEN.2020.3045501 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2560911047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9296741</ieee_id><sourcerecordid>2560911047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a2dbfcfcb70f8b39b53ede53f21b4be8bcabb445c1395348921ac0edda1e83063</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NZ7M5SmlrpSi0FbyFJDtbW9zdmmzB_nuzbPE0L8zzzsCD0D0lI0qJfnpdT99GjDAy4kRISegFGlAp84wqkV92mZNMcPV5jW5i3BNCtZJqgGbT3zZY3-7qLW6_AM-aALHFm9Mh5dBUeAVV0wJeQx07ZlHZLUTsTnhl6yLt-8Ituirtd4S78xyij9l0M3nJlu_zxeR5mXmmeZtZVrjSl94pUuaOayc5FCB5yagTDnLnrXNCSE-5llzkmlHrCRSFpZBzMuZD9NjfPYTm55gem31zDHV6aZgcE51cCJUo2lM-NDEGKM0h7CobToYS0-kynS7T6TJnXanz0Hd2APDPa6bHSlD-B6McZlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560911047</pqid></control><display><type>article</type><title>Extracting the Forest Type From Remote Sensing Images by Random Forest</title><source>IEEE Electronic Library (IEL)</source><creator>Linhui, Li ; Weipeng, Jing ; Huihui, Wang</creator><creatorcontrib>Linhui, Li ; Weipeng, Jing ; Huihui, Wang</creatorcontrib><description>Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low accuracy of extracting the information of forest types from high-resolution remote sensing images and the lack of an effective identification method. The GF-2 remote sensing image in the Laoshan construction area of the Maoershan Forest Farm, Heilongjiang Province was as the data source, supplemented by aerial RGB images with a resolution of 0.2 m and the second type inventory of forest resources data. Considering the spatial characteristics of the spectrum, texture, vegetation index, terrain, multiscale segmentation was performed, the optimal feature space was constructed, and the number of decision trees was estimated. In this manner, an object-oriented random forest (RF) scheme was established. Comparative experiments were performed using the support vector machine(SVM) classifier. The experimental results indicated that the overall accuracy and kappa coefficient of the proposed method was 83.16% and 79.86%, respectively, higher than those of the SVM classification method. These findings demonstrated that the proposed method can effectively increase the classification accuracy of forest types.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3045501</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Classification ; Color imagery ; Decision trees ; Feature extraction ; Forest type extraction ; Forestry ; Identification methods ; Image resolution ; Image segmentation ; object oriented ; Random forests ; Remote sensing ; RF classification ; Sensors ; Spatial data ; Support vector machines ; SVM classification ; Vegetation ; Vegetation index ; Vegetation mapping</subject><ispartof>IEEE sensors journal, 2021-08, Vol.21 (16), p.17447-17454</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a2dbfcfcb70f8b39b53ede53f21b4be8bcabb445c1395348921ac0edda1e83063</citedby><cites>FETCH-LOGICAL-c293t-a2dbfcfcb70f8b39b53ede53f21b4be8bcabb445c1395348921ac0edda1e83063</cites><orcidid>0000-0002-4098-5313 ; 0000-0001-7933-6946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9296741$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9296741$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Linhui, Li</creatorcontrib><creatorcontrib>Weipeng, Jing</creatorcontrib><creatorcontrib>Huihui, Wang</creatorcontrib><title>Extracting the Forest Type From Remote Sensing Images by Random Forest</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low accuracy of extracting the information of forest types from high-resolution remote sensing images and the lack of an effective identification method. The GF-2 remote sensing image in the Laoshan construction area of the Maoershan Forest Farm, Heilongjiang Province was as the data source, supplemented by aerial RGB images with a resolution of 0.2 m and the second type inventory of forest resources data. Considering the spatial characteristics of the spectrum, texture, vegetation index, terrain, multiscale segmentation was performed, the optimal feature space was constructed, and the number of decision trees was estimated. In this manner, an object-oriented random forest (RF) scheme was established. Comparative experiments were performed using the support vector machine(SVM) classifier. The experimental results indicated that the overall accuracy and kappa coefficient of the proposed method was 83.16% and 79.86%, respectively, higher than those of the SVM classification method. These findings demonstrated that the proposed method can effectively increase the classification accuracy of forest types.</description><subject>Accuracy</subject><subject>Classification</subject><subject>Color imagery</subject><subject>Decision trees</subject><subject>Feature extraction</subject><subject>Forest type extraction</subject><subject>Forestry</subject><subject>Identification methods</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>object oriented</subject><subject>Random forests</subject><subject>Remote sensing</subject><subject>RF classification</subject><subject>Sensors</subject><subject>Spatial data</subject><subject>Support vector machines</subject><subject>SVM classification</subject><subject>Vegetation</subject><subject>Vegetation index</subject><subject>Vegetation mapping</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NZ7M5SmlrpSi0FbyFJDtbW9zdmmzB_nuzbPE0L8zzzsCD0D0lI0qJfnpdT99GjDAy4kRISegFGlAp84wqkV92mZNMcPV5jW5i3BNCtZJqgGbT3zZY3-7qLW6_AM-aALHFm9Mh5dBUeAVV0wJeQx07ZlHZLUTsTnhl6yLt-8Ituirtd4S78xyij9l0M3nJlu_zxeR5mXmmeZtZVrjSl94pUuaOayc5FCB5yagTDnLnrXNCSE-5llzkmlHrCRSFpZBzMuZD9NjfPYTm55gem31zDHV6aZgcE51cCJUo2lM-NDEGKM0h7CobToYS0-kynS7T6TJnXanz0Hd2APDPa6bHSlD-B6McZlg</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Linhui, Li</creator><creator>Weipeng, Jing</creator><creator>Huihui, Wang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4098-5313</orcidid><orcidid>https://orcid.org/0000-0001-7933-6946</orcidid></search><sort><creationdate>20210815</creationdate><title>Extracting the Forest Type From Remote Sensing Images by Random Forest</title><author>Linhui, Li ; Weipeng, Jing ; Huihui, Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a2dbfcfcb70f8b39b53ede53f21b4be8bcabb445c1395348921ac0edda1e83063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Color imagery</topic><topic>Decision trees</topic><topic>Feature extraction</topic><topic>Forest type extraction</topic><topic>Forestry</topic><topic>Identification methods</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>object oriented</topic><topic>Random forests</topic><topic>Remote sensing</topic><topic>RF classification</topic><topic>Sensors</topic><topic>Spatial data</topic><topic>Support vector machines</topic><topic>SVM classification</topic><topic>Vegetation</topic><topic>Vegetation index</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linhui, Li</creatorcontrib><creatorcontrib>Weipeng, Jing</creatorcontrib><creatorcontrib>Huihui, Wang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Linhui, Li</au><au>Weipeng, Jing</au><au>Huihui, Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting the Forest Type From Remote Sensing Images by Random Forest</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-08-15</date><risdate>2021</risdate><volume>21</volume><issue>16</issue><spage>17447</spage><epage>17454</epage><pages>17447-17454</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low accuracy of extracting the information of forest types from high-resolution remote sensing images and the lack of an effective identification method. The GF-2 remote sensing image in the Laoshan construction area of the Maoershan Forest Farm, Heilongjiang Province was as the data source, supplemented by aerial RGB images with a resolution of 0.2 m and the second type inventory of forest resources data. Considering the spatial characteristics of the spectrum, texture, vegetation index, terrain, multiscale segmentation was performed, the optimal feature space was constructed, and the number of decision trees was estimated. In this manner, an object-oriented random forest (RF) scheme was established. Comparative experiments were performed using the support vector machine(SVM) classifier. The experimental results indicated that the overall accuracy and kappa coefficient of the proposed method was 83.16% and 79.86%, respectively, higher than those of the SVM classification method. These findings demonstrated that the proposed method can effectively increase the classification accuracy of forest types.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3045501</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4098-5313</orcidid><orcidid>https://orcid.org/0000-0001-7933-6946</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2021-08, Vol.21 (16), p.17447-17454 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_proquest_journals_2560911047 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Classification Color imagery Decision trees Feature extraction Forest type extraction Forestry Identification methods Image resolution Image segmentation object oriented Random forests Remote sensing RF classification Sensors Spatial data Support vector machines SVM classification Vegetation Vegetation index Vegetation mapping |
title | Extracting the Forest Type From Remote Sensing Images by Random Forest |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20the%20Forest%20Type%20From%20Remote%20Sensing%20Images%20by%20Random%20Forest&rft.jtitle=IEEE%20sensors%20journal&rft.au=Linhui,%20Li&rft.date=2021-08-15&rft.volume=21&rft.issue=16&rft.spage=17447&rft.epage=17454&rft.pages=17447-17454&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3045501&rft_dat=%3Cproquest_RIE%3E2560911047%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560911047&rft_id=info:pmid/&rft_ieee_id=9296741&rfr_iscdi=true |