Extracting the Forest Type From Remote Sensing Images by Random Forest

Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low accuracy of extracting the information of forest types from high-resolution remote sensing images and the lack of an effective identification method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2021-08, Vol.21 (16), p.17447-17454
Hauptverfasser: Linhui, Li, Weipeng, Jing, Huihui, Wang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17454
container_issue 16
container_start_page 17447
container_title IEEE sensors journal
container_volume 21
creator Linhui, Li
Weipeng, Jing
Huihui, Wang
description Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low accuracy of extracting the information of forest types from high-resolution remote sensing images and the lack of an effective identification method. The GF-2 remote sensing image in the Laoshan construction area of the Maoershan Forest Farm, Heilongjiang Province was as the data source, supplemented by aerial RGB images with a resolution of 0.2 m and the second type inventory of forest resources data. Considering the spatial characteristics of the spectrum, texture, vegetation index, terrain, multiscale segmentation was performed, the optimal feature space was constructed, and the number of decision trees was estimated. In this manner, an object-oriented random forest (RF) scheme was established. Comparative experiments were performed using the support vector machine(SVM) classifier. The experimental results indicated that the overall accuracy and kappa coefficient of the proposed method was 83.16% and 79.86%, respectively, higher than those of the SVM classification method. These findings demonstrated that the proposed method can effectively increase the classification accuracy of forest types.
doi_str_mv 10.1109/JSEN.2020.3045501
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2560911047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9296741</ieee_id><sourcerecordid>2560911047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-a2dbfcfcb70f8b39b53ede53f21b4be8bcabb445c1395348921ac0edda1e83063</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NZ7M5SmlrpSi0FbyFJDtbW9zdmmzB_nuzbPE0L8zzzsCD0D0lI0qJfnpdT99GjDAy4kRISegFGlAp84wqkV92mZNMcPV5jW5i3BNCtZJqgGbT3zZY3-7qLW6_AM-aALHFm9Mh5dBUeAVV0wJeQx07ZlHZLUTsTnhl6yLt-8Ituirtd4S78xyij9l0M3nJlu_zxeR5mXmmeZtZVrjSl94pUuaOayc5FCB5yagTDnLnrXNCSE-5llzkmlHrCRSFpZBzMuZD9NjfPYTm55gem31zDHV6aZgcE51cCJUo2lM-NDEGKM0h7CobToYS0-kynS7T6TJnXanz0Hd2APDPa6bHSlD-B6McZlg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560911047</pqid></control><display><type>article</type><title>Extracting the Forest Type From Remote Sensing Images by Random Forest</title><source>IEEE Electronic Library (IEL)</source><creator>Linhui, Li ; Weipeng, Jing ; Huihui, Wang</creator><creatorcontrib>Linhui, Li ; Weipeng, Jing ; Huihui, Wang</creatorcontrib><description>Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low accuracy of extracting the information of forest types from high-resolution remote sensing images and the lack of an effective identification method. The GF-2 remote sensing image in the Laoshan construction area of the Maoershan Forest Farm, Heilongjiang Province was as the data source, supplemented by aerial RGB images with a resolution of 0.2 m and the second type inventory of forest resources data. Considering the spatial characteristics of the spectrum, texture, vegetation index, terrain, multiscale segmentation was performed, the optimal feature space was constructed, and the number of decision trees was estimated. In this manner, an object-oriented random forest (RF) scheme was established. Comparative experiments were performed using the support vector machine(SVM) classifier. The experimental results indicated that the overall accuracy and kappa coefficient of the proposed method was 83.16% and 79.86%, respectively, higher than those of the SVM classification method. These findings demonstrated that the proposed method can effectively increase the classification accuracy of forest types.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2020.3045501</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Classification ; Color imagery ; Decision trees ; Feature extraction ; Forest type extraction ; Forestry ; Identification methods ; Image resolution ; Image segmentation ; object oriented ; Random forests ; Remote sensing ; RF classification ; Sensors ; Spatial data ; Support vector machines ; SVM classification ; Vegetation ; Vegetation index ; Vegetation mapping</subject><ispartof>IEEE sensors journal, 2021-08, Vol.21 (16), p.17447-17454</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-a2dbfcfcb70f8b39b53ede53f21b4be8bcabb445c1395348921ac0edda1e83063</citedby><cites>FETCH-LOGICAL-c293t-a2dbfcfcb70f8b39b53ede53f21b4be8bcabb445c1395348921ac0edda1e83063</cites><orcidid>0000-0002-4098-5313 ; 0000-0001-7933-6946</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9296741$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9296741$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Linhui, Li</creatorcontrib><creatorcontrib>Weipeng, Jing</creatorcontrib><creatorcontrib>Huihui, Wang</creatorcontrib><title>Extracting the Forest Type From Remote Sensing Images by Random Forest</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low accuracy of extracting the information of forest types from high-resolution remote sensing images and the lack of an effective identification method. The GF-2 remote sensing image in the Laoshan construction area of the Maoershan Forest Farm, Heilongjiang Province was as the data source, supplemented by aerial RGB images with a resolution of 0.2 m and the second type inventory of forest resources data. Considering the spatial characteristics of the spectrum, texture, vegetation index, terrain, multiscale segmentation was performed, the optimal feature space was constructed, and the number of decision trees was estimated. In this manner, an object-oriented random forest (RF) scheme was established. Comparative experiments were performed using the support vector machine(SVM) classifier. The experimental results indicated that the overall accuracy and kappa coefficient of the proposed method was 83.16% and 79.86%, respectively, higher than those of the SVM classification method. These findings demonstrated that the proposed method can effectively increase the classification accuracy of forest types.</description><subject>Accuracy</subject><subject>Classification</subject><subject>Color imagery</subject><subject>Decision trees</subject><subject>Feature extraction</subject><subject>Forest type extraction</subject><subject>Forestry</subject><subject>Identification methods</subject><subject>Image resolution</subject><subject>Image segmentation</subject><subject>object oriented</subject><subject>Random forests</subject><subject>Remote sensing</subject><subject>RF classification</subject><subject>Sensors</subject><subject>Spatial data</subject><subject>Support vector machines</subject><subject>SVM classification</subject><subject>Vegetation</subject><subject>Vegetation index</subject><subject>Vegetation mapping</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1LAzEQhoMoWKs_QLwEPG_NZ7M5SmlrpSi0FbyFJDtbW9zdmmzB_nuzbPE0L8zzzsCD0D0lI0qJfnpdT99GjDAy4kRISegFGlAp84wqkV92mZNMcPV5jW5i3BNCtZJqgGbT3zZY3-7qLW6_AM-aALHFm9Mh5dBUeAVV0wJeQx07ZlHZLUTsTnhl6yLt-8Ituirtd4S78xyij9l0M3nJlu_zxeR5mXmmeZtZVrjSl94pUuaOayc5FCB5yagTDnLnrXNCSE-5llzkmlHrCRSFpZBzMuZD9NjfPYTm55gem31zDHV6aZgcE51cCJUo2lM-NDEGKM0h7CobToYS0-kynS7T6TJnXanz0Hd2APDPa6bHSlD-B6McZlg</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Linhui, Li</creator><creator>Weipeng, Jing</creator><creator>Huihui, Wang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4098-5313</orcidid><orcidid>https://orcid.org/0000-0001-7933-6946</orcidid></search><sort><creationdate>20210815</creationdate><title>Extracting the Forest Type From Remote Sensing Images by Random Forest</title><author>Linhui, Li ; Weipeng, Jing ; Huihui, Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-a2dbfcfcb70f8b39b53ede53f21b4be8bcabb445c1395348921ac0edda1e83063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Color imagery</topic><topic>Decision trees</topic><topic>Feature extraction</topic><topic>Forest type extraction</topic><topic>Forestry</topic><topic>Identification methods</topic><topic>Image resolution</topic><topic>Image segmentation</topic><topic>object oriented</topic><topic>Random forests</topic><topic>Remote sensing</topic><topic>RF classification</topic><topic>Sensors</topic><topic>Spatial data</topic><topic>Support vector machines</topic><topic>SVM classification</topic><topic>Vegetation</topic><topic>Vegetation index</topic><topic>Vegetation mapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Linhui, Li</creatorcontrib><creatorcontrib>Weipeng, Jing</creatorcontrib><creatorcontrib>Huihui, Wang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Linhui, Li</au><au>Weipeng, Jing</au><au>Huihui, Wang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extracting the Forest Type From Remote Sensing Images by Random Forest</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-08-15</date><risdate>2021</risdate><volume>21</volume><issue>16</issue><spage>17447</spage><epage>17454</epage><pages>17447-17454</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Identifying the types of forest and the corresponding distribution is of significance in forest resource monitoring and management. Considering the low accuracy of extracting the information of forest types from high-resolution remote sensing images and the lack of an effective identification method. The GF-2 remote sensing image in the Laoshan construction area of the Maoershan Forest Farm, Heilongjiang Province was as the data source, supplemented by aerial RGB images with a resolution of 0.2 m and the second type inventory of forest resources data. Considering the spatial characteristics of the spectrum, texture, vegetation index, terrain, multiscale segmentation was performed, the optimal feature space was constructed, and the number of decision trees was estimated. In this manner, an object-oriented random forest (RF) scheme was established. Comparative experiments were performed using the support vector machine(SVM) classifier. The experimental results indicated that the overall accuracy and kappa coefficient of the proposed method was 83.16% and 79.86%, respectively, higher than those of the SVM classification method. These findings demonstrated that the proposed method can effectively increase the classification accuracy of forest types.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2020.3045501</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4098-5313</orcidid><orcidid>https://orcid.org/0000-0001-7933-6946</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-08, Vol.21 (16), p.17447-17454
issn 1530-437X
1558-1748
language eng
recordid cdi_proquest_journals_2560911047
source IEEE Electronic Library (IEL)
subjects Accuracy
Classification
Color imagery
Decision trees
Feature extraction
Forest type extraction
Forestry
Identification methods
Image resolution
Image segmentation
object oriented
Random forests
Remote sensing
RF classification
Sensors
Spatial data
Support vector machines
SVM classification
Vegetation
Vegetation index
Vegetation mapping
title Extracting the Forest Type From Remote Sensing Images by Random Forest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T17%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extracting%20the%20Forest%20Type%20From%20Remote%20Sensing%20Images%20by%20Random%20Forest&rft.jtitle=IEEE%20sensors%20journal&rft.au=Linhui,%20Li&rft.date=2021-08-15&rft.volume=21&rft.issue=16&rft.spage=17447&rft.epage=17454&rft.pages=17447-17454&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2020.3045501&rft_dat=%3Cproquest_RIE%3E2560911047%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560911047&rft_id=info:pmid/&rft_ieee_id=9296741&rfr_iscdi=true