Effect of similar and dissimilar interface layers on delamination in hybrid plain woven glass/carbon epoxy laminated composite double cantilever beam under Mode-I loading

•Delamination in hybrid composites with different interfaces for Mode-I is examined.•GI, GII, and GTotal for hybrid composites computed by Valvo’s mode partition method.•Computed contribution of GI compared with data reduction schemes of ASTM D5528-13.•Carbon with glass at interface of symmetric hyb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical and applied fracture mechanics 2021-08, Vol.114, p.102988, Article 102988
Hauptverfasser: Suman, M.L.J., Murigendrappa, S.M., Kattimani, Subhaschandra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 102988
container_title Theoretical and applied fracture mechanics
container_volume 114
creator Suman, M.L.J.
Murigendrappa, S.M.
Kattimani, Subhaschandra
description •Delamination in hybrid composites with different interfaces for Mode-I is examined.•GI, GII, and GTotal for hybrid composites computed by Valvo’s mode partition method.•Computed contribution of GI compared with data reduction schemes of ASTM D5528-13.•Carbon with glass at interface of symmetric hybrid configuration enhances GIinitial.•Resin rich layer results in high energy dissipation compared to resin rich pockets. Effect of similar and dissimilar interface layers on delamination in hybrid plain woven glass/carbon epoxy laminated composite double cantilever beam under Mode-I loading has been investigated experimentally and analytically. Glass-glass, glass-carbon interface layers in three different configurations of hybrid plain woven glass/carbon epoxy laminated composites were fabricated. Valvo’s mode partition method from the literature is utilised to compute individual modal contributions and total fracture toughness of the hybrid composite laminates. Mode-I fracture toughness contribution is compared with standard data reduction schemes of ASTM D5528-13. The comparison reveals that Valvo’s mode partition method considers mode-mixity and provides conservative results. The Valvo’s mode partition does not require any correction factors including curve fitting, it provides a straightforward method for evaluating fracture toughness as they are based on the mechanics of composite materials. The comparison of R-curves of hybrid configurations reveal that the insertion of carbon with glass at the interface of symmetric hybrid configuration enhances initial fracture toughness and stabilises whereas, with the change in layer configuration of anyone arm of the double-cantilever beam, the crack growth trend is also affected irrespective of same interface layers. The fractography analysis of delamination surfaces reveals that crack propagation through a resin-rich layer creates a rougher fracture surface resulting in higher energy dissipation as compared to crack propagation through resin-rich pockets.
doi_str_mv 10.1016/j.tafmec.2021.102988
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560877591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167844221000963</els_id><sourcerecordid>2560877591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-6587d6bcfdf58f605d53bef48cb49ae3abe341efd3780eba8884327e10e20363</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EEkvhDThY4pytHSex94KEqgKVirj0bo3tcfHKsYOdXdhX4ilxlXLlNPOP_n9Go4-Q95ztOePT9XG_gp_R7nvW8zbqD0q9IDuuZN_JSaiXZNdsslPD0L8mb2o9MsYlP4gd-XPrPdqVZk9rmEOEQiE56kL9J0NasXiwSCNcsFSaE3UYYQ4J1tBESPTHxZTg6BKhiV_5jIk-Rqj12kIxzYJL_n2hzxl01OZ5yTWsSF0-mYjUQlpDxDMWahBmekqutd-yw-6OxgwupMe35JWHWPHdc70iD59vH26-dvffv9zdfLrvrBDD2k2jkm4y1js_Kj-x0Y3CoB-UNcMBUIBBMXD0TkjF0IBSahC9RM6wZ2ISV-TDtnYp-ecJ66qP-VRSu6j7cWJKyvHAm2vYXLbkWgt6vZQwQ7lozvQTFH3UGxT9BEVvUFrs4xbD9sA5YNHVBkwWXSgNg3Y5_H_BX1kWm3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560877591</pqid></control><display><type>article</type><title>Effect of similar and dissimilar interface layers on delamination in hybrid plain woven glass/carbon epoxy laminated composite double cantilever beam under Mode-I loading</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Suman, M.L.J. ; Murigendrappa, S.M. ; Kattimani, Subhaschandra</creator><creatorcontrib>Suman, M.L.J. ; Murigendrappa, S.M. ; Kattimani, Subhaschandra</creatorcontrib><description>•Delamination in hybrid composites with different interfaces for Mode-I is examined.•GI, GII, and GTotal for hybrid composites computed by Valvo’s mode partition method.•Computed contribution of GI compared with data reduction schemes of ASTM D5528-13.•Carbon with glass at interface of symmetric hybrid configuration enhances GIinitial.•Resin rich layer results in high energy dissipation compared to resin rich pockets. Effect of similar and dissimilar interface layers on delamination in hybrid plain woven glass/carbon epoxy laminated composite double cantilever beam under Mode-I loading has been investigated experimentally and analytically. Glass-glass, glass-carbon interface layers in three different configurations of hybrid plain woven glass/carbon epoxy laminated composites were fabricated. Valvo’s mode partition method from the literature is utilised to compute individual modal contributions and total fracture toughness of the hybrid composite laminates. Mode-I fracture toughness contribution is compared with standard data reduction schemes of ASTM D5528-13. The comparison reveals that Valvo’s mode partition method considers mode-mixity and provides conservative results. The Valvo’s mode partition does not require any correction factors including curve fitting, it provides a straightforward method for evaluating fracture toughness as they are based on the mechanics of composite materials. The comparison of R-curves of hybrid configurations reveal that the insertion of carbon with glass at the interface of symmetric hybrid configuration enhances initial fracture toughness and stabilises whereas, with the change in layer configuration of anyone arm of the double-cantilever beam, the crack growth trend is also affected irrespective of same interface layers. The fractography analysis of delamination surfaces reveals that crack propagation through a resin-rich layer creates a rougher fracture surface resulting in higher energy dissipation as compared to crack propagation through resin-rich pockets.</description><identifier>ISSN: 0167-8442</identifier><identifier>EISSN: 1872-7638</identifier><identifier>DOI: 10.1016/j.tafmec.2021.102988</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Cantilever beams ; Carbon ; Carbon fiber reinforced plastics ; Composite materials ; Configurations ; Crack propagation ; Curve fitting ; Data reduction ; Delamination ; Energy dissipation ; Fracture surfaces ; Fracture toughness ; Glass/carbon hybrid ; Hybrid composites ; Hybrid interface ; Laminar composites ; Laminates ; Mode-I delamination ; Resins ; Standard data ; Strain Energy Release Rate</subject><ispartof>Theoretical and applied fracture mechanics, 2021-08, Vol.114, p.102988, Article 102988</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-6587d6bcfdf58f605d53bef48cb49ae3abe341efd3780eba8884327e10e20363</citedby><cites>FETCH-LOGICAL-c334t-6587d6bcfdf58f605d53bef48cb49ae3abe341efd3780eba8884327e10e20363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tafmec.2021.102988$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Suman, M.L.J.</creatorcontrib><creatorcontrib>Murigendrappa, S.M.</creatorcontrib><creatorcontrib>Kattimani, Subhaschandra</creatorcontrib><title>Effect of similar and dissimilar interface layers on delamination in hybrid plain woven glass/carbon epoxy laminated composite double cantilever beam under Mode-I loading</title><title>Theoretical and applied fracture mechanics</title><description>•Delamination in hybrid composites with different interfaces for Mode-I is examined.•GI, GII, and GTotal for hybrid composites computed by Valvo’s mode partition method.•Computed contribution of GI compared with data reduction schemes of ASTM D5528-13.•Carbon with glass at interface of symmetric hybrid configuration enhances GIinitial.•Resin rich layer results in high energy dissipation compared to resin rich pockets. Effect of similar and dissimilar interface layers on delamination in hybrid plain woven glass/carbon epoxy laminated composite double cantilever beam under Mode-I loading has been investigated experimentally and analytically. Glass-glass, glass-carbon interface layers in three different configurations of hybrid plain woven glass/carbon epoxy laminated composites were fabricated. Valvo’s mode partition method from the literature is utilised to compute individual modal contributions and total fracture toughness of the hybrid composite laminates. Mode-I fracture toughness contribution is compared with standard data reduction schemes of ASTM D5528-13. The comparison reveals that Valvo’s mode partition method considers mode-mixity and provides conservative results. The Valvo’s mode partition does not require any correction factors including curve fitting, it provides a straightforward method for evaluating fracture toughness as they are based on the mechanics of composite materials. The comparison of R-curves of hybrid configurations reveal that the insertion of carbon with glass at the interface of symmetric hybrid configuration enhances initial fracture toughness and stabilises whereas, with the change in layer configuration of anyone arm of the double-cantilever beam, the crack growth trend is also affected irrespective of same interface layers. The fractography analysis of delamination surfaces reveals that crack propagation through a resin-rich layer creates a rougher fracture surface resulting in higher energy dissipation as compared to crack propagation through resin-rich pockets.</description><subject>Cantilever beams</subject><subject>Carbon</subject><subject>Carbon fiber reinforced plastics</subject><subject>Composite materials</subject><subject>Configurations</subject><subject>Crack propagation</subject><subject>Curve fitting</subject><subject>Data reduction</subject><subject>Delamination</subject><subject>Energy dissipation</subject><subject>Fracture surfaces</subject><subject>Fracture toughness</subject><subject>Glass/carbon hybrid</subject><subject>Hybrid composites</subject><subject>Hybrid interface</subject><subject>Laminar composites</subject><subject>Laminates</subject><subject>Mode-I delamination</subject><subject>Resins</subject><subject>Standard data</subject><subject>Strain Energy Release Rate</subject><issn>0167-8442</issn><issn>1872-7638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhi0EEkvhDThY4pytHSex94KEqgKVirj0bo3tcfHKsYOdXdhX4ilxlXLlNPOP_n9Go4-Q95ztOePT9XG_gp_R7nvW8zbqD0q9IDuuZN_JSaiXZNdsslPD0L8mb2o9MsYlP4gd-XPrPdqVZk9rmEOEQiE56kL9J0NasXiwSCNcsFSaE3UYYQ4J1tBESPTHxZTg6BKhiV_5jIk-Rqj12kIxzYJL_n2hzxl01OZ5yTWsSF0-mYjUQlpDxDMWahBmekqutd-yw-6OxgwupMe35JWHWPHdc70iD59vH26-dvffv9zdfLrvrBDD2k2jkm4y1js_Kj-x0Y3CoB-UNcMBUIBBMXD0TkjF0IBSahC9RM6wZ2ISV-TDtnYp-ecJ66qP-VRSu6j7cWJKyvHAm2vYXLbkWgt6vZQwQ7lozvQTFH3UGxT9BEVvUFrs4xbD9sA5YNHVBkwWXSgNg3Y5_H_BX1kWm3w</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Suman, M.L.J.</creator><creator>Murigendrappa, S.M.</creator><creator>Kattimani, Subhaschandra</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>202108</creationdate><title>Effect of similar and dissimilar interface layers on delamination in hybrid plain woven glass/carbon epoxy laminated composite double cantilever beam under Mode-I loading</title><author>Suman, M.L.J. ; Murigendrappa, S.M. ; Kattimani, Subhaschandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-6587d6bcfdf58f605d53bef48cb49ae3abe341efd3780eba8884327e10e20363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cantilever beams</topic><topic>Carbon</topic><topic>Carbon fiber reinforced plastics</topic><topic>Composite materials</topic><topic>Configurations</topic><topic>Crack propagation</topic><topic>Curve fitting</topic><topic>Data reduction</topic><topic>Delamination</topic><topic>Energy dissipation</topic><topic>Fracture surfaces</topic><topic>Fracture toughness</topic><topic>Glass/carbon hybrid</topic><topic>Hybrid composites</topic><topic>Hybrid interface</topic><topic>Laminar composites</topic><topic>Laminates</topic><topic>Mode-I delamination</topic><topic>Resins</topic><topic>Standard data</topic><topic>Strain Energy Release Rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suman, M.L.J.</creatorcontrib><creatorcontrib>Murigendrappa, S.M.</creatorcontrib><creatorcontrib>Kattimani, Subhaschandra</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Theoretical and applied fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suman, M.L.J.</au><au>Murigendrappa, S.M.</au><au>Kattimani, Subhaschandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of similar and dissimilar interface layers on delamination in hybrid plain woven glass/carbon epoxy laminated composite double cantilever beam under Mode-I loading</atitle><jtitle>Theoretical and applied fracture mechanics</jtitle><date>2021-08</date><risdate>2021</risdate><volume>114</volume><spage>102988</spage><pages>102988-</pages><artnum>102988</artnum><issn>0167-8442</issn><eissn>1872-7638</eissn><abstract>•Delamination in hybrid composites with different interfaces for Mode-I is examined.•GI, GII, and GTotal for hybrid composites computed by Valvo’s mode partition method.•Computed contribution of GI compared with data reduction schemes of ASTM D5528-13.•Carbon with glass at interface of symmetric hybrid configuration enhances GIinitial.•Resin rich layer results in high energy dissipation compared to resin rich pockets. Effect of similar and dissimilar interface layers on delamination in hybrid plain woven glass/carbon epoxy laminated composite double cantilever beam under Mode-I loading has been investigated experimentally and analytically. Glass-glass, glass-carbon interface layers in three different configurations of hybrid plain woven glass/carbon epoxy laminated composites were fabricated. Valvo’s mode partition method from the literature is utilised to compute individual modal contributions and total fracture toughness of the hybrid composite laminates. Mode-I fracture toughness contribution is compared with standard data reduction schemes of ASTM D5528-13. The comparison reveals that Valvo’s mode partition method considers mode-mixity and provides conservative results. The Valvo’s mode partition does not require any correction factors including curve fitting, it provides a straightforward method for evaluating fracture toughness as they are based on the mechanics of composite materials. The comparison of R-curves of hybrid configurations reveal that the insertion of carbon with glass at the interface of symmetric hybrid configuration enhances initial fracture toughness and stabilises whereas, with the change in layer configuration of anyone arm of the double-cantilever beam, the crack growth trend is also affected irrespective of same interface layers. The fractography analysis of delamination surfaces reveals that crack propagation through a resin-rich layer creates a rougher fracture surface resulting in higher energy dissipation as compared to crack propagation through resin-rich pockets.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.tafmec.2021.102988</doi></addata></record>
fulltext fulltext
identifier ISSN: 0167-8442
ispartof Theoretical and applied fracture mechanics, 2021-08, Vol.114, p.102988, Article 102988
issn 0167-8442
1872-7638
language eng
recordid cdi_proquest_journals_2560877591
source ScienceDirect Journals (5 years ago - present)
subjects Cantilever beams
Carbon
Carbon fiber reinforced plastics
Composite materials
Configurations
Crack propagation
Curve fitting
Data reduction
Delamination
Energy dissipation
Fracture surfaces
Fracture toughness
Glass/carbon hybrid
Hybrid composites
Hybrid interface
Laminar composites
Laminates
Mode-I delamination
Resins
Standard data
Strain Energy Release Rate
title Effect of similar and dissimilar interface layers on delamination in hybrid plain woven glass/carbon epoxy laminated composite double cantilever beam under Mode-I loading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A08%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20similar%20and%20dissimilar%20interface%20layers%20on%20delamination%20in%20hybrid%20plain%20woven%20glass/carbon%20epoxy%20laminated%20composite%20double%20cantilever%20beam%20under%20Mode-I%20loading&rft.jtitle=Theoretical%20and%20applied%20fracture%20mechanics&rft.au=Suman,%20M.L.J.&rft.date=2021-08&rft.volume=114&rft.spage=102988&rft.pages=102988-&rft.artnum=102988&rft.issn=0167-8442&rft.eissn=1872-7638&rft_id=info:doi/10.1016/j.tafmec.2021.102988&rft_dat=%3Cproquest_cross%3E2560877591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560877591&rft_id=info:pmid/&rft_els_id=S0167844221000963&rfr_iscdi=true