Corrosion fatigue life prediction of crude oil storage tank via improved equivalent initial flaw size
•EIFS is improved for corrosion fatigue life prediction.•Corrosion fatigue life prediction model is developed via I-EIFS.•Corrosion fatigue life of COST is predicted with proposed model.•The validity of life prediction method for COST is verified by comparing service life. Corrosion fatigue is ident...
Gespeichert in:
Veröffentlicht in: | Theoretical and applied fracture mechanics 2021-08, Vol.114, p.103023, Article 103023 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 103023 |
container_title | Theoretical and applied fracture mechanics |
container_volume | 114 |
creator | Zhang, Yuru Liu, Xintian Lai, Jiafeng Wei, Yuwei Luo, Jiao |
description | •EIFS is improved for corrosion fatigue life prediction.•Corrosion fatigue life prediction model is developed via I-EIFS.•Corrosion fatigue life of COST is predicted with proposed model.•The validity of life prediction method for COST is verified by comparing service life.
Corrosion fatigue is identified as the main failure mechanism for structures working in severe corrosive medium subjected to cyclic rotating bending fatigue, for example crude oil storage tank (COST). Emphasis is placed on the study of corrosion pit formation and the development of cracks from pits. An improved equivalent initial flaw size (I-EIFS) is proposed for corrosion fatigue life prediction. Based on the concept of equivalent initial flaw size (EIFS), pitting corrosion and small crack growth are equivalent to a part of long crack growth process in corrosion fatigue process. Pitting and crack propagation are quantified throughout the fatigue loading thereby allowing a model to be developed that included the stages of pit development, pit-to-crack transition and crack growth in order to predict the fatigue life. A corrosion fatigue life prediction case is adopted to demonstrate the effectiveness of the proposed model. Based on the proposed model, failure analysis and stress calculation are performed to predict the corrosion fatigue life of COST, which provides a method for the life prediction of COST. The validity of proposed method is verified by comparing the service life of COST. |
doi_str_mv | 10.1016/j.tafmec.2021.103023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560877347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167844221001312</els_id><sourcerecordid>2560877347</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-273dd38c3c9983bdb41acb08458167797f35ebebeba74d8b6df1bc5bcbf8eeb43</originalsourceid><addsrcrecordid>eNp9kEtLQzEQhYMoWB__wEXA9a3JTdqkG0GKLyi40XXIY1JSb2_aJLeiv96U61pmMTCcOXPmQ-iGkikldH63mRbtt2CnLWlpHTHSshM0oVK0jZgzeYomVSYayXl7ji5y3hBCBV2wCYJlTCnmEHvsdQnrAXAXPOBdAhdsOc6jxzYNDnAMHc4lJr0GXHT_iQ9B47DdpXgAh2E_hIPuoC849KEE3WHf6S-cww9coTOvuwzXf_0SfTw9vi9fmtXb8-vyYdVYxnhpWsGcY9Iyu1hIZpzhVFtDJJ_JGl8shGczMMfSgjtp5s5TY2fGGi8BDGeX6Hb0rZn2A-SiNnFIfT2p2tmcSCEYF1XFR5Wtn-cEXu1S2Or0rShRR6Bqo0ag6ghUjUDr2v24BvWDQ4Cksg3Q2woqgS3KxfC_wS9sF4LK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560877347</pqid></control><display><type>article</type><title>Corrosion fatigue life prediction of crude oil storage tank via improved equivalent initial flaw size</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Zhang, Yuru ; Liu, Xintian ; Lai, Jiafeng ; Wei, Yuwei ; Luo, Jiao</creator><creatorcontrib>Zhang, Yuru ; Liu, Xintian ; Lai, Jiafeng ; Wei, Yuwei ; Luo, Jiao</creatorcontrib><description>•EIFS is improved for corrosion fatigue life prediction.•Corrosion fatigue life prediction model is developed via I-EIFS.•Corrosion fatigue life of COST is predicted with proposed model.•The validity of life prediction method for COST is verified by comparing service life.
Corrosion fatigue is identified as the main failure mechanism for structures working in severe corrosive medium subjected to cyclic rotating bending fatigue, for example crude oil storage tank (COST). Emphasis is placed on the study of corrosion pit formation and the development of cracks from pits. An improved equivalent initial flaw size (I-EIFS) is proposed for corrosion fatigue life prediction. Based on the concept of equivalent initial flaw size (EIFS), pitting corrosion and small crack growth are equivalent to a part of long crack growth process in corrosion fatigue process. Pitting and crack propagation are quantified throughout the fatigue loading thereby allowing a model to be developed that included the stages of pit development, pit-to-crack transition and crack growth in order to predict the fatigue life. A corrosion fatigue life prediction case is adopted to demonstrate the effectiveness of the proposed model. Based on the proposed model, failure analysis and stress calculation are performed to predict the corrosion fatigue life of COST, which provides a method for the life prediction of COST. The validity of proposed method is verified by comparing the service life of COST.</description><identifier>ISSN: 0167-8442</identifier><identifier>EISSN: 1872-7638</identifier><identifier>DOI: 10.1016/j.tafmec.2021.103023</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Bending fatigue ; Corrosion ; Corrosion fatigue ; Corrosion mechanisms ; Corrosion tests ; COST ; Crack propagation ; Crude oil ; EIFS ; Equivalence ; Failure analysis ; Failure mechanisms ; Fatigue cracks ; Fatigue failure ; Fatigue life ; I-EIFS ; Life prediction ; Pitting (corrosion) ; Service life ; Storage tanks ; Stress corrosion cracking</subject><ispartof>Theoretical and applied fracture mechanics, 2021-08, Vol.114, p.103023, Article 103023</ispartof><rights>2021 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-273dd38c3c9983bdb41acb08458167797f35ebebeba74d8b6df1bc5bcbf8eeb43</citedby><cites>FETCH-LOGICAL-c334t-273dd38c3c9983bdb41acb08458167797f35ebebeba74d8b6df1bc5bcbf8eeb43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.tafmec.2021.103023$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids></links><search><creatorcontrib>Zhang, Yuru</creatorcontrib><creatorcontrib>Liu, Xintian</creatorcontrib><creatorcontrib>Lai, Jiafeng</creatorcontrib><creatorcontrib>Wei, Yuwei</creatorcontrib><creatorcontrib>Luo, Jiao</creatorcontrib><title>Corrosion fatigue life prediction of crude oil storage tank via improved equivalent initial flaw size</title><title>Theoretical and applied fracture mechanics</title><description>•EIFS is improved for corrosion fatigue life prediction.•Corrosion fatigue life prediction model is developed via I-EIFS.•Corrosion fatigue life of COST is predicted with proposed model.•The validity of life prediction method for COST is verified by comparing service life.
Corrosion fatigue is identified as the main failure mechanism for structures working in severe corrosive medium subjected to cyclic rotating bending fatigue, for example crude oil storage tank (COST). Emphasis is placed on the study of corrosion pit formation and the development of cracks from pits. An improved equivalent initial flaw size (I-EIFS) is proposed for corrosion fatigue life prediction. Based on the concept of equivalent initial flaw size (EIFS), pitting corrosion and small crack growth are equivalent to a part of long crack growth process in corrosion fatigue process. Pitting and crack propagation are quantified throughout the fatigue loading thereby allowing a model to be developed that included the stages of pit development, pit-to-crack transition and crack growth in order to predict the fatigue life. A corrosion fatigue life prediction case is adopted to demonstrate the effectiveness of the proposed model. Based on the proposed model, failure analysis and stress calculation are performed to predict the corrosion fatigue life of COST, which provides a method for the life prediction of COST. The validity of proposed method is verified by comparing the service life of COST.</description><subject>Bending fatigue</subject><subject>Corrosion</subject><subject>Corrosion fatigue</subject><subject>Corrosion mechanisms</subject><subject>Corrosion tests</subject><subject>COST</subject><subject>Crack propagation</subject><subject>Crude oil</subject><subject>EIFS</subject><subject>Equivalence</subject><subject>Failure analysis</subject><subject>Failure mechanisms</subject><subject>Fatigue cracks</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>I-EIFS</subject><subject>Life prediction</subject><subject>Pitting (corrosion)</subject><subject>Service life</subject><subject>Storage tanks</subject><subject>Stress corrosion cracking</subject><issn>0167-8442</issn><issn>1872-7638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLQzEQhYMoWB__wEXA9a3JTdqkG0GKLyi40XXIY1JSb2_aJLeiv96U61pmMTCcOXPmQ-iGkikldH63mRbtt2CnLWlpHTHSshM0oVK0jZgzeYomVSYayXl7ji5y3hBCBV2wCYJlTCnmEHvsdQnrAXAXPOBdAhdsOc6jxzYNDnAMHc4lJr0GXHT_iQ9B47DdpXgAh2E_hIPuoC849KEE3WHf6S-cww9coTOvuwzXf_0SfTw9vi9fmtXb8-vyYdVYxnhpWsGcY9Iyu1hIZpzhVFtDJJ_JGl8shGczMMfSgjtp5s5TY2fGGi8BDGeX6Hb0rZn2A-SiNnFIfT2p2tmcSCEYF1XFR5Wtn-cEXu1S2Or0rShRR6Bqo0ag6ghUjUDr2v24BvWDQ4Cksg3Q2woqgS3KxfC_wS9sF4LK</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Zhang, Yuru</creator><creator>Liu, Xintian</creator><creator>Lai, Jiafeng</creator><creator>Wei, Yuwei</creator><creator>Luo, Jiao</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>202108</creationdate><title>Corrosion fatigue life prediction of crude oil storage tank via improved equivalent initial flaw size</title><author>Zhang, Yuru ; Liu, Xintian ; Lai, Jiafeng ; Wei, Yuwei ; Luo, Jiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-273dd38c3c9983bdb41acb08458167797f35ebebeba74d8b6df1bc5bcbf8eeb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Bending fatigue</topic><topic>Corrosion</topic><topic>Corrosion fatigue</topic><topic>Corrosion mechanisms</topic><topic>Corrosion tests</topic><topic>COST</topic><topic>Crack propagation</topic><topic>Crude oil</topic><topic>EIFS</topic><topic>Equivalence</topic><topic>Failure analysis</topic><topic>Failure mechanisms</topic><topic>Fatigue cracks</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>I-EIFS</topic><topic>Life prediction</topic><topic>Pitting (corrosion)</topic><topic>Service life</topic><topic>Storage tanks</topic><topic>Stress corrosion cracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yuru</creatorcontrib><creatorcontrib>Liu, Xintian</creatorcontrib><creatorcontrib>Lai, Jiafeng</creatorcontrib><creatorcontrib>Wei, Yuwei</creatorcontrib><creatorcontrib>Luo, Jiao</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Theoretical and applied fracture mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yuru</au><au>Liu, Xintian</au><au>Lai, Jiafeng</au><au>Wei, Yuwei</au><au>Luo, Jiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Corrosion fatigue life prediction of crude oil storage tank via improved equivalent initial flaw size</atitle><jtitle>Theoretical and applied fracture mechanics</jtitle><date>2021-08</date><risdate>2021</risdate><volume>114</volume><spage>103023</spage><pages>103023-</pages><artnum>103023</artnum><issn>0167-8442</issn><eissn>1872-7638</eissn><abstract>•EIFS is improved for corrosion fatigue life prediction.•Corrosion fatigue life prediction model is developed via I-EIFS.•Corrosion fatigue life of COST is predicted with proposed model.•The validity of life prediction method for COST is verified by comparing service life.
Corrosion fatigue is identified as the main failure mechanism for structures working in severe corrosive medium subjected to cyclic rotating bending fatigue, for example crude oil storage tank (COST). Emphasis is placed on the study of corrosion pit formation and the development of cracks from pits. An improved equivalent initial flaw size (I-EIFS) is proposed for corrosion fatigue life prediction. Based on the concept of equivalent initial flaw size (EIFS), pitting corrosion and small crack growth are equivalent to a part of long crack growth process in corrosion fatigue process. Pitting and crack propagation are quantified throughout the fatigue loading thereby allowing a model to be developed that included the stages of pit development, pit-to-crack transition and crack growth in order to predict the fatigue life. A corrosion fatigue life prediction case is adopted to demonstrate the effectiveness of the proposed model. Based on the proposed model, failure analysis and stress calculation are performed to predict the corrosion fatigue life of COST, which provides a method for the life prediction of COST. The validity of proposed method is verified by comparing the service life of COST.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.tafmec.2021.103023</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8442 |
ispartof | Theoretical and applied fracture mechanics, 2021-08, Vol.114, p.103023, Article 103023 |
issn | 0167-8442 1872-7638 |
language | eng |
recordid | cdi_proquest_journals_2560877347 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Bending fatigue Corrosion Corrosion fatigue Corrosion mechanisms Corrosion tests COST Crack propagation Crude oil EIFS Equivalence Failure analysis Failure mechanisms Fatigue cracks Fatigue failure Fatigue life I-EIFS Life prediction Pitting (corrosion) Service life Storage tanks Stress corrosion cracking |
title | Corrosion fatigue life prediction of crude oil storage tank via improved equivalent initial flaw size |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T22%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Corrosion%20fatigue%20life%20prediction%20of%20crude%20oil%20storage%20tank%20via%20improved%20equivalent%20initial%20flaw%20size&rft.jtitle=Theoretical%20and%20applied%20fracture%20mechanics&rft.au=Zhang,%20Yuru&rft.date=2021-08&rft.volume=114&rft.spage=103023&rft.pages=103023-&rft.artnum=103023&rft.issn=0167-8442&rft.eissn=1872-7638&rft_id=info:doi/10.1016/j.tafmec.2021.103023&rft_dat=%3Cproquest_cross%3E2560877347%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560877347&rft_id=info:pmid/&rft_els_id=S0167844221001312&rfr_iscdi=true |