Frequency- and time-limited balanced truncation for large-scale second-order systems

Considering the use of dynamical systems in practical applications, often only limited regions in the time or frequency domain are of interest. Therefore, it usually pays off to compute local approximations of the used dynamical systems in the frequency and time domain. In this paper, we consider a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2021-08, Vol.623, p.68-103
Hauptverfasser: Benner, Peter, Werner, Steffen W.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103
container_issue
container_start_page 68
container_title Linear algebra and its applications
container_volume 623
creator Benner, Peter
Werner, Steffen W.R.
description Considering the use of dynamical systems in practical applications, often only limited regions in the time or frequency domain are of interest. Therefore, it usually pays off to compute local approximations of the used dynamical systems in the frequency and time domain. In this paper, we consider a structure-preserving extension of the frequency- and time-limited balanced truncation methods to second-order dynamical systems. We give a full overview about the first-order limited balanced truncation methods and extend those to second-order systems by using the different second-order balanced truncation formulas from the literature. Also, we present numerical methods for solving the arising large-scale sparse matrix equations and give numerical modifications to deal with the problematic case of second-order systems. The results are then illustrated on three numerical examples.
doi_str_mv 10.1016/j.laa.2020.06.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560874185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379520303153</els_id><sourcerecordid>2560874185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-6f2cdd697f1e4dd43f4eae37bee144355d46f4bd26819eb959c2cf3be31a7ce93</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwNuC56z5t9ldPEmxKhS81HPIJhPJst3UJBX67U2pZ08zDO_NzPshdE9JTQmVj2M9aV0zwkhNZE2YuEAL2rUc066Rl2hBygjztm-u0U1KIyFEtIQt0HYd4fsAszniSs-2yn4HePI7n8FWg570bEqT42E2OvswVy7EatLxC3AyeoIqgQmzxSFaiFU6pgy7dIuunJ4S3P3VJfpcv2xXb3jz8fq-et5gw2WXsXTMWCv71lEQ1gruBGjg7QBAheBNY4V0YrBMdrSHoW96w4zjA3CqWwM9X6KH8959DCVEymoMhziXk4o1knStKOmLip5VJoaUIji1j36n41FRok7w1KgKPHWCp4hUhVTxPJ09UN7_8RBVMh5OLHwEk5UN_h_3Lyb9eF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560874185</pqid></control><display><type>article</type><title>Frequency- and time-limited balanced truncation for large-scale second-order systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Benner, Peter ; Werner, Steffen W.R.</creator><creatorcontrib>Benner, Peter ; Werner, Steffen W.R.</creatorcontrib><description>Considering the use of dynamical systems in practical applications, often only limited regions in the time or frequency domain are of interest. Therefore, it usually pays off to compute local approximations of the used dynamical systems in the frequency and time domain. In this paper, we consider a structure-preserving extension of the frequency- and time-limited balanced truncation methods to second-order dynamical systems. We give a full overview about the first-order limited balanced truncation methods and extend those to second-order systems by using the different second-order balanced truncation formulas from the literature. Also, we present numerical methods for solving the arising large-scale sparse matrix equations and give numerical modifications to deal with the problematic case of second-order systems. The results are then illustrated on three numerical examples.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.06.024</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Balanced truncation ; Dynamical systems ; Frequency-limited balanced truncation ; Linear algebra ; Linear systems ; Local model reduction ; Model order reduction ; Numerical methods ; Second-order differential equations ; Sparse matrices ; Structure-preserving approximation ; Time-limited balanced truncation</subject><ispartof>Linear algebra and its applications, 2021-08, Vol.623, p.68-103</ispartof><rights>2020 The Author(s)</rights><rights>Copyright American Elsevier Company, Inc. Aug 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-6f2cdd697f1e4dd43f4eae37bee144355d46f4bd26819eb959c2cf3be31a7ce93</citedby><cites>FETCH-LOGICAL-c368t-6f2cdd697f1e4dd43f4eae37bee144355d46f4bd26819eb959c2cf3be31a7ce93</cites><orcidid>0000-0003-1667-4862 ; 0000-0003-3362-4103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2020.06.024$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Benner, Peter</creatorcontrib><creatorcontrib>Werner, Steffen W.R.</creatorcontrib><title>Frequency- and time-limited balanced truncation for large-scale second-order systems</title><title>Linear algebra and its applications</title><description>Considering the use of dynamical systems in practical applications, often only limited regions in the time or frequency domain are of interest. Therefore, it usually pays off to compute local approximations of the used dynamical systems in the frequency and time domain. In this paper, we consider a structure-preserving extension of the frequency- and time-limited balanced truncation methods to second-order dynamical systems. We give a full overview about the first-order limited balanced truncation methods and extend those to second-order systems by using the different second-order balanced truncation formulas from the literature. Also, we present numerical methods for solving the arising large-scale sparse matrix equations and give numerical modifications to deal with the problematic case of second-order systems. The results are then illustrated on three numerical examples.</description><subject>Balanced truncation</subject><subject>Dynamical systems</subject><subject>Frequency-limited balanced truncation</subject><subject>Linear algebra</subject><subject>Linear systems</subject><subject>Local model reduction</subject><subject>Model order reduction</subject><subject>Numerical methods</subject><subject>Second-order differential equations</subject><subject>Sparse matrices</subject><subject>Structure-preserving approximation</subject><subject>Time-limited balanced truncation</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwNuC56z5t9ldPEmxKhS81HPIJhPJst3UJBX67U2pZ08zDO_NzPshdE9JTQmVj2M9aV0zwkhNZE2YuEAL2rUc066Rl2hBygjztm-u0U1KIyFEtIQt0HYd4fsAszniSs-2yn4HePI7n8FWg570bEqT42E2OvswVy7EatLxC3AyeoIqgQmzxSFaiFU6pgy7dIuunJ4S3P3VJfpcv2xXb3jz8fq-et5gw2WXsXTMWCv71lEQ1gruBGjg7QBAheBNY4V0YrBMdrSHoW96w4zjA3CqWwM9X6KH8959DCVEymoMhziXk4o1knStKOmLip5VJoaUIji1j36n41FRok7w1KgKPHWCp4hUhVTxPJ09UN7_8RBVMh5OLHwEk5UN_h_3Lyb9eF8</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Benner, Peter</creator><creator>Werner, Steffen W.R.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1667-4862</orcidid><orcidid>https://orcid.org/0000-0003-3362-4103</orcidid></search><sort><creationdate>20210815</creationdate><title>Frequency- and time-limited balanced truncation for large-scale second-order systems</title><author>Benner, Peter ; Werner, Steffen W.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-6f2cdd697f1e4dd43f4eae37bee144355d46f4bd26819eb959c2cf3be31a7ce93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Balanced truncation</topic><topic>Dynamical systems</topic><topic>Frequency-limited balanced truncation</topic><topic>Linear algebra</topic><topic>Linear systems</topic><topic>Local model reduction</topic><topic>Model order reduction</topic><topic>Numerical methods</topic><topic>Second-order differential equations</topic><topic>Sparse matrices</topic><topic>Structure-preserving approximation</topic><topic>Time-limited balanced truncation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benner, Peter</creatorcontrib><creatorcontrib>Werner, Steffen W.R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benner, Peter</au><au>Werner, Steffen W.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency- and time-limited balanced truncation for large-scale second-order systems</atitle><jtitle>Linear algebra and its applications</jtitle><date>2021-08-15</date><risdate>2021</risdate><volume>623</volume><spage>68</spage><epage>103</epage><pages>68-103</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Considering the use of dynamical systems in practical applications, often only limited regions in the time or frequency domain are of interest. Therefore, it usually pays off to compute local approximations of the used dynamical systems in the frequency and time domain. In this paper, we consider a structure-preserving extension of the frequency- and time-limited balanced truncation methods to second-order dynamical systems. We give a full overview about the first-order limited balanced truncation methods and extend those to second-order systems by using the different second-order balanced truncation formulas from the literature. Also, we present numerical methods for solving the arising large-scale sparse matrix equations and give numerical modifications to deal with the problematic case of second-order systems. The results are then illustrated on three numerical examples.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.06.024</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0003-1667-4862</orcidid><orcidid>https://orcid.org/0000-0003-3362-4103</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2021-08, Vol.623, p.68-103
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2560874185
source Elsevier ScienceDirect Journals Complete
subjects Balanced truncation
Dynamical systems
Frequency-limited balanced truncation
Linear algebra
Linear systems
Local model reduction
Model order reduction
Numerical methods
Second-order differential equations
Sparse matrices
Structure-preserving approximation
Time-limited balanced truncation
title Frequency- and time-limited balanced truncation for large-scale second-order systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-%20and%20time-limited%20balanced%20truncation%20for%20large-scale%20second-order%20systems&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Benner,%20Peter&rft.date=2021-08-15&rft.volume=623&rft.spage=68&rft.epage=103&rft.pages=68-103&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.06.024&rft_dat=%3Cproquest_cross%3E2560874185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560874185&rft_id=info:pmid/&rft_els_id=S0024379520303153&rfr_iscdi=true