Frequency- and time-limited balanced truncation for large-scale second-order systems
Considering the use of dynamical systems in practical applications, often only limited regions in the time or frequency domain are of interest. Therefore, it usually pays off to compute local approximations of the used dynamical systems in the frequency and time domain. In this paper, we consider a...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2021-08, Vol.623, p.68-103 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 103 |
---|---|
container_issue | |
container_start_page | 68 |
container_title | Linear algebra and its applications |
container_volume | 623 |
creator | Benner, Peter Werner, Steffen W.R. |
description | Considering the use of dynamical systems in practical applications, often only limited regions in the time or frequency domain are of interest. Therefore, it usually pays off to compute local approximations of the used dynamical systems in the frequency and time domain. In this paper, we consider a structure-preserving extension of the frequency- and time-limited balanced truncation methods to second-order dynamical systems. We give a full overview about the first-order limited balanced truncation methods and extend those to second-order systems by using the different second-order balanced truncation formulas from the literature. Also, we present numerical methods for solving the arising large-scale sparse matrix equations and give numerical modifications to deal with the problematic case of second-order systems. The results are then illustrated on three numerical examples. |
doi_str_mv | 10.1016/j.laa.2020.06.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560874185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379520303153</els_id><sourcerecordid>2560874185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-6f2cdd697f1e4dd43f4eae37bee144355d46f4bd26819eb959c2cf3be31a7ce93</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwNuC56z5t9ldPEmxKhS81HPIJhPJst3UJBX67U2pZ08zDO_NzPshdE9JTQmVj2M9aV0zwkhNZE2YuEAL2rUc066Rl2hBygjztm-u0U1KIyFEtIQt0HYd4fsAszniSs-2yn4HePI7n8FWg570bEqT42E2OvswVy7EatLxC3AyeoIqgQmzxSFaiFU6pgy7dIuunJ4S3P3VJfpcv2xXb3jz8fq-et5gw2WXsXTMWCv71lEQ1gruBGjg7QBAheBNY4V0YrBMdrSHoW96w4zjA3CqWwM9X6KH8959DCVEymoMhziXk4o1knStKOmLip5VJoaUIji1j36n41FRok7w1KgKPHWCp4hUhVTxPJ09UN7_8RBVMh5OLHwEk5UN_h_3Lyb9eF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560874185</pqid></control><display><type>article</type><title>Frequency- and time-limited balanced truncation for large-scale second-order systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Benner, Peter ; Werner, Steffen W.R.</creator><creatorcontrib>Benner, Peter ; Werner, Steffen W.R.</creatorcontrib><description>Considering the use of dynamical systems in practical applications, often only limited regions in the time or frequency domain are of interest. Therefore, it usually pays off to compute local approximations of the used dynamical systems in the frequency and time domain. In this paper, we consider a structure-preserving extension of the frequency- and time-limited balanced truncation methods to second-order dynamical systems. We give a full overview about the first-order limited balanced truncation methods and extend those to second-order systems by using the different second-order balanced truncation formulas from the literature. Also, we present numerical methods for solving the arising large-scale sparse matrix equations and give numerical modifications to deal with the problematic case of second-order systems. The results are then illustrated on three numerical examples.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2020.06.024</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Balanced truncation ; Dynamical systems ; Frequency-limited balanced truncation ; Linear algebra ; Linear systems ; Local model reduction ; Model order reduction ; Numerical methods ; Second-order differential equations ; Sparse matrices ; Structure-preserving approximation ; Time-limited balanced truncation</subject><ispartof>Linear algebra and its applications, 2021-08, Vol.623, p.68-103</ispartof><rights>2020 The Author(s)</rights><rights>Copyright American Elsevier Company, Inc. Aug 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-6f2cdd697f1e4dd43f4eae37bee144355d46f4bd26819eb959c2cf3be31a7ce93</citedby><cites>FETCH-LOGICAL-c368t-6f2cdd697f1e4dd43f4eae37bee144355d46f4bd26819eb959c2cf3be31a7ce93</cites><orcidid>0000-0003-1667-4862 ; 0000-0003-3362-4103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2020.06.024$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Benner, Peter</creatorcontrib><creatorcontrib>Werner, Steffen W.R.</creatorcontrib><title>Frequency- and time-limited balanced truncation for large-scale second-order systems</title><title>Linear algebra and its applications</title><description>Considering the use of dynamical systems in practical applications, often only limited regions in the time or frequency domain are of interest. Therefore, it usually pays off to compute local approximations of the used dynamical systems in the frequency and time domain. In this paper, we consider a structure-preserving extension of the frequency- and time-limited balanced truncation methods to second-order dynamical systems. We give a full overview about the first-order limited balanced truncation methods and extend those to second-order systems by using the different second-order balanced truncation formulas from the literature. Also, we present numerical methods for solving the arising large-scale sparse matrix equations and give numerical modifications to deal with the problematic case of second-order systems. The results are then illustrated on three numerical examples.</description><subject>Balanced truncation</subject><subject>Dynamical systems</subject><subject>Frequency-limited balanced truncation</subject><subject>Linear algebra</subject><subject>Linear systems</subject><subject>Local model reduction</subject><subject>Model order reduction</subject><subject>Numerical methods</subject><subject>Second-order differential equations</subject><subject>Sparse matrices</subject><subject>Structure-preserving approximation</subject><subject>Time-limited balanced truncation</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsfwNuC56z5t9ldPEmxKhS81HPIJhPJst3UJBX67U2pZ08zDO_NzPshdE9JTQmVj2M9aV0zwkhNZE2YuEAL2rUc066Rl2hBygjztm-u0U1KIyFEtIQt0HYd4fsAszniSs-2yn4HePI7n8FWg570bEqT42E2OvswVy7EatLxC3AyeoIqgQmzxSFaiFU6pgy7dIuunJ4S3P3VJfpcv2xXb3jz8fq-et5gw2WXsXTMWCv71lEQ1gruBGjg7QBAheBNY4V0YrBMdrSHoW96w4zjA3CqWwM9X6KH8959DCVEymoMhziXk4o1knStKOmLip5VJoaUIji1j36n41FRok7w1KgKPHWCp4hUhVTxPJ09UN7_8RBVMh5OLHwEk5UN_h_3Lyb9eF8</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Benner, Peter</creator><creator>Werner, Steffen W.R.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1667-4862</orcidid><orcidid>https://orcid.org/0000-0003-3362-4103</orcidid></search><sort><creationdate>20210815</creationdate><title>Frequency- and time-limited balanced truncation for large-scale second-order systems</title><author>Benner, Peter ; Werner, Steffen W.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-6f2cdd697f1e4dd43f4eae37bee144355d46f4bd26819eb959c2cf3be31a7ce93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Balanced truncation</topic><topic>Dynamical systems</topic><topic>Frequency-limited balanced truncation</topic><topic>Linear algebra</topic><topic>Linear systems</topic><topic>Local model reduction</topic><topic>Model order reduction</topic><topic>Numerical methods</topic><topic>Second-order differential equations</topic><topic>Sparse matrices</topic><topic>Structure-preserving approximation</topic><topic>Time-limited balanced truncation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benner, Peter</creatorcontrib><creatorcontrib>Werner, Steffen W.R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benner, Peter</au><au>Werner, Steffen W.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency- and time-limited balanced truncation for large-scale second-order systems</atitle><jtitle>Linear algebra and its applications</jtitle><date>2021-08-15</date><risdate>2021</risdate><volume>623</volume><spage>68</spage><epage>103</epage><pages>68-103</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Considering the use of dynamical systems in practical applications, often only limited regions in the time or frequency domain are of interest. Therefore, it usually pays off to compute local approximations of the used dynamical systems in the frequency and time domain. In this paper, we consider a structure-preserving extension of the frequency- and time-limited balanced truncation methods to second-order dynamical systems. We give a full overview about the first-order limited balanced truncation methods and extend those to second-order systems by using the different second-order balanced truncation formulas from the literature. Also, we present numerical methods for solving the arising large-scale sparse matrix equations and give numerical modifications to deal with the problematic case of second-order systems. The results are then illustrated on three numerical examples.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2020.06.024</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0003-1667-4862</orcidid><orcidid>https://orcid.org/0000-0003-3362-4103</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2021-08, Vol.623, p.68-103 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2560874185 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Balanced truncation Dynamical systems Frequency-limited balanced truncation Linear algebra Linear systems Local model reduction Model order reduction Numerical methods Second-order differential equations Sparse matrices Structure-preserving approximation Time-limited balanced truncation |
title | Frequency- and time-limited balanced truncation for large-scale second-order systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T18%3A42%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency-%20and%20time-limited%20balanced%20truncation%20for%20large-scale%20second-order%20systems&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Benner,%20Peter&rft.date=2021-08-15&rft.volume=623&rft.spage=68&rft.epage=103&rft.pages=68-103&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2020.06.024&rft_dat=%3Cproquest_cross%3E2560874185%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560874185&rft_id=info:pmid/&rft_els_id=S0024379520303153&rfr_iscdi=true |