On minimal bases and indices of rational matrices and their linearizations

A complete theory of the relationship between the minimal bases and indices of rational matrices and those of their strong linearizations is presented. Such theory is based on establishing first the relationships between the minimal bases and indices of rational matrices and those of their polynomia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2021-08, Vol.623, p.14-67
Hauptverfasser: Amparan, A., Dopico, F.M., Marcaida, S., Zaballa, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 67
container_issue
container_start_page 14
container_title Linear algebra and its applications
container_volume 623
creator Amparan, A.
Dopico, F.M.
Marcaida, S.
Zaballa, I.
description A complete theory of the relationship between the minimal bases and indices of rational matrices and those of their strong linearizations is presented. Such theory is based on establishing first the relationships between the minimal bases and indices of rational matrices and those of their polynomial system matrices under the classical minimality condition and certain additional conditions of properness. This is related to pioneering results obtained by Verghese, Van Dooren and Kailath in 1979-1980, which were the first proving results of this type. It is shown that the definitions of linearizations and strong linearizations do not guarantee any relationship between the minimal bases and indices of the linearizations and the rational matrices in general. In contrast, simple relationships are obtained for the family of strong block minimal bases linearizations, which can be used to compute minimal bases and indices of any rational matrix, including rectangular ones, via algorithms for pencils. These results extend the corresponding ones for other families of linearizations available in recent literature for square rational matrices.
doi_str_mv 10.1016/j.laa.2021.01.014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560873732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379521000331</els_id><sourcerecordid>2560873732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-f026107d35ff52fa96e9ded2ff6f623730d07909378387f3e10d7c75ccf236d63</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLg-vEDvBU8t06SNmnxJIufLOxFzyEmE0zppmvSFfTXm-56FgZmmHlveO8RckWhokDFTV8NWlcMGK1grvqILGgreUnbRhyTBQCrSy675pScpdQDQC2BLcjLOhQbH_xGD8W7TpgKHWzhg_Umz6Mrop78GPJ1o6e4X86A6QN9LAYfUEf_s4ekC3Li9JDw8q-fk7eH-9flU7laPz4v71al4aKdSgdMUJCWN841zOlOYGfRMueEE4xLDhZkBx2XLW-l40jBSiMbYxzjwgp-Tq4Pf7dx_NxhmlQ_7mKWmBRrBGTTkrOMogeUiWNKEZ3axuwyfisKao5M9SpHpubIFMxVZ87tgYNZ_pfHqJLxGAxaH9FMyo7-H_YvgvJzFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560873732</pqid></control><display><type>article</type><title>On minimal bases and indices of rational matrices and their linearizations</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Amparan, A. ; Dopico, F.M. ; Marcaida, S. ; Zaballa, I.</creator><creatorcontrib>Amparan, A. ; Dopico, F.M. ; Marcaida, S. ; Zaballa, I.</creatorcontrib><description>A complete theory of the relationship between the minimal bases and indices of rational matrices and those of their strong linearizations is presented. Such theory is based on establishing first the relationships between the minimal bases and indices of rational matrices and those of their polynomial system matrices under the classical minimality condition and certain additional conditions of properness. This is related to pioneering results obtained by Verghese, Van Dooren and Kailath in 1979-1980, which were the first proving results of this type. It is shown that the definitions of linearizations and strong linearizations do not guarantee any relationship between the minimal bases and indices of the linearizations and the rational matrices in general. In contrast, simple relationships are obtained for the family of strong block minimal bases linearizations, which can be used to compute minimal bases and indices of any rational matrix, including rectangular ones, via algorithms for pencils. These results extend the corresponding ones for other families of linearizations available in recent literature for square rational matrices.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2021.01.014</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>[formula omitted]-strong linearizations ; Algorithms ; Fiedler-like linearizations ; Linear algebra ; Linearizations ; Minimal bases ; Minimal indices ; Polynomial system matrices ; Polynomials ; Rational matrices ; Strong block minimal bases linearizations</subject><ispartof>Linear algebra and its applications, 2021-08, Vol.623, p.14-67</ispartof><rights>2021 The Authors</rights><rights>Copyright American Elsevier Company, Inc. Aug 15, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-f026107d35ff52fa96e9ded2ff6f623730d07909378387f3e10d7c75ccf236d63</citedby><cites>FETCH-LOGICAL-c368t-f026107d35ff52fa96e9ded2ff6f623730d07909378387f3e10d7c75ccf236d63</cites><orcidid>0000-0003-2620-7109 ; 0000-0001-7779-8960 ; 0000-0002-6113-9079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2021.01.014$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Amparan, A.</creatorcontrib><creatorcontrib>Dopico, F.M.</creatorcontrib><creatorcontrib>Marcaida, S.</creatorcontrib><creatorcontrib>Zaballa, I.</creatorcontrib><title>On minimal bases and indices of rational matrices and their linearizations</title><title>Linear algebra and its applications</title><description>A complete theory of the relationship between the minimal bases and indices of rational matrices and those of their strong linearizations is presented. Such theory is based on establishing first the relationships between the minimal bases and indices of rational matrices and those of their polynomial system matrices under the classical minimality condition and certain additional conditions of properness. This is related to pioneering results obtained by Verghese, Van Dooren and Kailath in 1979-1980, which were the first proving results of this type. It is shown that the definitions of linearizations and strong linearizations do not guarantee any relationship between the minimal bases and indices of the linearizations and the rational matrices in general. In contrast, simple relationships are obtained for the family of strong block minimal bases linearizations, which can be used to compute minimal bases and indices of any rational matrix, including rectangular ones, via algorithms for pencils. These results extend the corresponding ones for other families of linearizations available in recent literature for square rational matrices.</description><subject>[formula omitted]-strong linearizations</subject><subject>Algorithms</subject><subject>Fiedler-like linearizations</subject><subject>Linear algebra</subject><subject>Linearizations</subject><subject>Minimal bases</subject><subject>Minimal indices</subject><subject>Polynomial system matrices</subject><subject>Polynomials</subject><subject>Rational matrices</subject><subject>Strong block minimal bases linearizations</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLg-vEDvBU8t06SNmnxJIufLOxFzyEmE0zppmvSFfTXm-56FgZmmHlveO8RckWhokDFTV8NWlcMGK1grvqILGgreUnbRhyTBQCrSy675pScpdQDQC2BLcjLOhQbH_xGD8W7TpgKHWzhg_Umz6Mrop78GPJ1o6e4X86A6QN9LAYfUEf_s4ekC3Li9JDw8q-fk7eH-9flU7laPz4v71al4aKdSgdMUJCWN841zOlOYGfRMueEE4xLDhZkBx2XLW-l40jBSiMbYxzjwgp-Tq4Pf7dx_NxhmlQ_7mKWmBRrBGTTkrOMogeUiWNKEZ3axuwyfisKao5M9SpHpubIFMxVZ87tgYNZ_pfHqJLxGAxaH9FMyo7-H_YvgvJzFA</recordid><startdate>20210815</startdate><enddate>20210815</enddate><creator>Amparan, A.</creator><creator>Dopico, F.M.</creator><creator>Marcaida, S.</creator><creator>Zaballa, I.</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-2620-7109</orcidid><orcidid>https://orcid.org/0000-0001-7779-8960</orcidid><orcidid>https://orcid.org/0000-0002-6113-9079</orcidid></search><sort><creationdate>20210815</creationdate><title>On minimal bases and indices of rational matrices and their linearizations</title><author>Amparan, A. ; Dopico, F.M. ; Marcaida, S. ; Zaballa, I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-f026107d35ff52fa96e9ded2ff6f623730d07909378387f3e10d7c75ccf236d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>[formula omitted]-strong linearizations</topic><topic>Algorithms</topic><topic>Fiedler-like linearizations</topic><topic>Linear algebra</topic><topic>Linearizations</topic><topic>Minimal bases</topic><topic>Minimal indices</topic><topic>Polynomial system matrices</topic><topic>Polynomials</topic><topic>Rational matrices</topic><topic>Strong block minimal bases linearizations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amparan, A.</creatorcontrib><creatorcontrib>Dopico, F.M.</creatorcontrib><creatorcontrib>Marcaida, S.</creatorcontrib><creatorcontrib>Zaballa, I.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Amparan, A.</au><au>Dopico, F.M.</au><au>Marcaida, S.</au><au>Zaballa, I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On minimal bases and indices of rational matrices and their linearizations</atitle><jtitle>Linear algebra and its applications</jtitle><date>2021-08-15</date><risdate>2021</risdate><volume>623</volume><spage>14</spage><epage>67</epage><pages>14-67</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>A complete theory of the relationship between the minimal bases and indices of rational matrices and those of their strong linearizations is presented. Such theory is based on establishing first the relationships between the minimal bases and indices of rational matrices and those of their polynomial system matrices under the classical minimality condition and certain additional conditions of properness. This is related to pioneering results obtained by Verghese, Van Dooren and Kailath in 1979-1980, which were the first proving results of this type. It is shown that the definitions of linearizations and strong linearizations do not guarantee any relationship between the minimal bases and indices of the linearizations and the rational matrices in general. In contrast, simple relationships are obtained for the family of strong block minimal bases linearizations, which can be used to compute minimal bases and indices of any rational matrix, including rectangular ones, via algorithms for pencils. These results extend the corresponding ones for other families of linearizations available in recent literature for square rational matrices.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2021.01.014</doi><tpages>54</tpages><orcidid>https://orcid.org/0000-0003-2620-7109</orcidid><orcidid>https://orcid.org/0000-0001-7779-8960</orcidid><orcidid>https://orcid.org/0000-0002-6113-9079</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2021-08, Vol.623, p.14-67
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2560873732
source ScienceDirect Journals (5 years ago - present)
subjects [formula omitted]-strong linearizations
Algorithms
Fiedler-like linearizations
Linear algebra
Linearizations
Minimal bases
Minimal indices
Polynomial system matrices
Polynomials
Rational matrices
Strong block minimal bases linearizations
title On minimal bases and indices of rational matrices and their linearizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A52%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20minimal%20bases%20and%20indices%20of%20rational%20matrices%20and%20their%20linearizations&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Amparan,%20A.&rft.date=2021-08-15&rft.volume=623&rft.spage=14&rft.epage=67&rft.pages=14-67&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2021.01.014&rft_dat=%3Cproquest_cross%3E2560873732%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560873732&rft_id=info:pmid/&rft_els_id=S0024379521000331&rfr_iscdi=true