Biomarkers and Fatty Fish Intake: A Randomized Controlled Trial in Norwegian Preschool Children
Biomarkers such as omega-3 (n–3) PUFAs, urinary iodine concentration (UIC), 1-methylhistidine (1-MH), and trimethylamine N-oxide (TMAO) have been associated with fish intake in observational studies, but data from children in randomized controlled trials are limited. The objective of this explorator...
Gespeichert in:
Veröffentlicht in: | The Journal of nutrition 2021-08, Vol.151 (8), p.2134-2141 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2141 |
---|---|
container_issue | 8 |
container_start_page | 2134 |
container_title | The Journal of nutrition |
container_volume | 151 |
creator | Solvik, Beate S Øyen, Jannike Kvestad, Ingrid Markhus, Maria W Ueland, Per M McCann, Adrian Strand, Tor A |
description | Biomarkers such as omega-3 (n–3) PUFAs, urinary iodine concentration (UIC), 1-methylhistidine (1-MH), and trimethylamine N-oxide (TMAO) have been associated with fish intake in observational studies, but data from children in randomized controlled trials are limited.
The objective of this exploratory analysis was to investigate the effects of fatty fish intake compared with meat intake on various biomarkers in preschool children.
We randomly allocated (1:1) 232 children, aged 4 to 6 y, from 13 kindergartens. The children received lunch meals of either fatty fish (herring/mackerel) or meat (chicken/lamb/beef) 3 times a week for 16 wk. We analyzed 86 biomarkers in plasma (n = 207), serum (n = 195), RBCs (n = 211), urine (n = 200), and hair samples (n = 210). We measured the effects of the intervention on the normalized biomarker concentrations in linear mixed-effect regression models taking the clustering within the kindergartens into account. The results are presented as standardized effect sizes.
We found significant effects of the intervention on the following biomarkers: RBC EPA (20:5n–3), 0.61 (95% CI: 0.36, 0.86); DHA (22:6n–3), 0.43 (95% CI: 0.21, 0.66); total n–3 PUFAs, 0.41 (95% CI: 0.20, 0.64); n–3/n–6 ratio, 0.48 (95% CI: 0.24, 0.71); adrenic acid (22:4n–6, −0.65 (95% CI: −0.91, −0.40), arachidonic acid (20:4n–6), −0.54 (95% CI: −0.79, −0.28); total n–6 PUFAs, −0.31 (95% CI: −0.56, −0.06); UIC, 0.32 (95% CI: 0.052, 0.59); hair mercury, 0.83 (95% CI: 0.05, 1.05); and plasma 1-MH, −0.35 (95% CI: −0.61, −0.094).
Of the 86 biomarkers, the strongest effect of fatty fish intake was on n–3 PUFAs, UIC, hair mercury, and plasma 1-MH. We observed no or limited effects on biomarkers related to micronutrient status, inflammation, or essential amino acid, choline oxidation, and tryptophan pathways.
The trial was registered at clinicaltrials.gov (NCT02331667). |
doi_str_mv | 10.1093/jn/nxab112 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_2560873159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022316622002760</els_id><sourcerecordid>2526143941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-1614e9c1b33290f924f99707b674b39eabafa86c06eb185a9b1a791fea5e03e43</originalsourceid><addsrcrecordid>eNqNkV9rFDEUxYModlt98QNIwBepjM2dZP6kD0IdXC0UFanPIZO50812NqlJtrV-erPsuqj44FMu3N89OYdDyDNgr4FJfrJ0J-677gHKB2QGlYCiBsYekhljZVlwqOsDchjjkjEGQraPyQHnsmmhZjOi3lq_0uEaQ6TaDXSuU7qncxsX9NwlfY2n9Ix-yRu_sj9woJ13KfhpyuNlsHqi1tGPPtzhldWOfg4YzcL7iXYLOw0B3RPyaNRTxKe794h8nb-77D4UF5_en3dnF4URFaQCahAoDfScl5KNshSjlA1r-roRPZeoez3qtjasxh7aSssedCNhRF0h4yj4EXmz1b1Z9yscDGabelI3weZ098prq_7cOLtQV_5WtVxIAJkFXu4Egv-2xpjUykaD06Qd-nVUZVVmj1wKyOiLv9ClXweX42WqZm3DodoIHm8pE3yMAce9GWBq05taOrXrLcPPf7e_R38VlYFXW-AOez9GY9EZ3GO52fxpjsI3HW_o9v_pziadrHedX7uUT8X2FHNbtxaD2p0PNqBJavD2XwF-AmWHx9Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560873159</pqid></control><display><type>article</type><title>Biomarkers and Fatty Fish Intake: A Randomized Controlled Trial in Norwegian Preschool Children</title><source>MEDLINE</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Solvik, Beate S ; Øyen, Jannike ; Kvestad, Ingrid ; Markhus, Maria W ; Ueland, Per M ; McCann, Adrian ; Strand, Tor A</creator><creatorcontrib>Solvik, Beate S ; Øyen, Jannike ; Kvestad, Ingrid ; Markhus, Maria W ; Ueland, Per M ; McCann, Adrian ; Strand, Tor A</creatorcontrib><description>Biomarkers such as omega-3 (n–3) PUFAs, urinary iodine concentration (UIC), 1-methylhistidine (1-MH), and trimethylamine N-oxide (TMAO) have been associated with fish intake in observational studies, but data from children in randomized controlled trials are limited.
The objective of this exploratory analysis was to investigate the effects of fatty fish intake compared with meat intake on various biomarkers in preschool children.
We randomly allocated (1:1) 232 children, aged 4 to 6 y, from 13 kindergartens. The children received lunch meals of either fatty fish (herring/mackerel) or meat (chicken/lamb/beef) 3 times a week for 16 wk. We analyzed 86 biomarkers in plasma (n = 207), serum (n = 195), RBCs (n = 211), urine (n = 200), and hair samples (n = 210). We measured the effects of the intervention on the normalized biomarker concentrations in linear mixed-effect regression models taking the clustering within the kindergartens into account. The results are presented as standardized effect sizes.
We found significant effects of the intervention on the following biomarkers: RBC EPA (20:5n–3), 0.61 (95% CI: 0.36, 0.86); DHA (22:6n–3), 0.43 (95% CI: 0.21, 0.66); total n–3 PUFAs, 0.41 (95% CI: 0.20, 0.64); n–3/n–6 ratio, 0.48 (95% CI: 0.24, 0.71); adrenic acid (22:4n–6, −0.65 (95% CI: −0.91, −0.40), arachidonic acid (20:4n–6), −0.54 (95% CI: −0.79, −0.28); total n–6 PUFAs, −0.31 (95% CI: −0.56, −0.06); UIC, 0.32 (95% CI: 0.052, 0.59); hair mercury, 0.83 (95% CI: 0.05, 1.05); and plasma 1-MH, −0.35 (95% CI: −0.61, −0.094).
Of the 86 biomarkers, the strongest effect of fatty fish intake was on n–3 PUFAs, UIC, hair mercury, and plasma 1-MH. We observed no or limited effects on biomarkers related to micronutrient status, inflammation, or essential amino acid, choline oxidation, and tryptophan pathways.
The trial was registered at clinicaltrials.gov (NCT02331667).</description><identifier>ISSN: 0022-3166</identifier><identifier>EISSN: 1541-6100</identifier><identifier>DOI: 10.1093/jn/nxab112</identifier><identifier>PMID: 33978160</identifier><language>eng</language><publisher>OXFORD: Elsevier Inc</publisher><subject>1-methylhistidine ; Amino acids ; Animals ; Arachidonic acid ; Bioaccumulation ; Biomarkers ; Cattle ; Child, Preschool ; Children ; Children & youth ; Childrens health ; Choline ; Clinical trials ; Clustering ; Diet ; Docosahexaenoic Acids ; Fatty acids ; Fatty Acids, Omega-3 ; fatty fish ; Fish ; Fishes ; Food intake ; Hair ; Humans ; Inflammation ; Iodine ; Kindergarten ; Life Sciences & Biomedicine ; Mackerel ; Meals ; Meat ; Mercury ; Nutrient Physiology, Metabolism, and Nutrient-Nutrient Interactions ; Nutrition ; Nutrition & Dietetics ; omega-3 ; Oxidation ; Pediatrics ; polyunsaturated fatty acids ; Preschool children ; Regression analysis ; Regression models ; Science & Technology ; Seafood ; Sheep ; Studies ; targeted metabolomics ; Trimethylamine ; Tryptophan ; Water pollution effects</subject><ispartof>The Journal of nutrition, 2021-08, Vol.151 (8), p.2134-2141</ispartof><rights>2021 American Society for Nutrition.</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the American Society for Nutrition.</rights><rights>Copyright American Institute of Nutrition Aug 2021</rights><rights>The Author(s) 2021. Published by Oxford University Press on behalf of the American Society for Nutrition. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>9</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000731834300010</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c451t-1614e9c1b33290f924f99707b674b39eabafa86c06eb185a9b1a791fea5e03e43</citedby><cites>FETCH-LOGICAL-c451t-1614e9c1b33290f924f99707b674b39eabafa86c06eb185a9b1a791fea5e03e43</cites><orcidid>0000-0002-4838-0239 ; 0000-0002-0196-5387 ; 0000-0002-7737-1497 ; 0000-0002-1903-0571 ; 0000-0002-5590-5136 ; 0000-0002-5728-5321 ; 0000-0002-4038-151X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932,39265</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33978160$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Solvik, Beate S</creatorcontrib><creatorcontrib>Øyen, Jannike</creatorcontrib><creatorcontrib>Kvestad, Ingrid</creatorcontrib><creatorcontrib>Markhus, Maria W</creatorcontrib><creatorcontrib>Ueland, Per M</creatorcontrib><creatorcontrib>McCann, Adrian</creatorcontrib><creatorcontrib>Strand, Tor A</creatorcontrib><title>Biomarkers and Fatty Fish Intake: A Randomized Controlled Trial in Norwegian Preschool Children</title><title>The Journal of nutrition</title><addtitle>J NUTR</addtitle><addtitle>J Nutr</addtitle><description>Biomarkers such as omega-3 (n–3) PUFAs, urinary iodine concentration (UIC), 1-methylhistidine (1-MH), and trimethylamine N-oxide (TMAO) have been associated with fish intake in observational studies, but data from children in randomized controlled trials are limited.
The objective of this exploratory analysis was to investigate the effects of fatty fish intake compared with meat intake on various biomarkers in preschool children.
We randomly allocated (1:1) 232 children, aged 4 to 6 y, from 13 kindergartens. The children received lunch meals of either fatty fish (herring/mackerel) or meat (chicken/lamb/beef) 3 times a week for 16 wk. We analyzed 86 biomarkers in plasma (n = 207), serum (n = 195), RBCs (n = 211), urine (n = 200), and hair samples (n = 210). We measured the effects of the intervention on the normalized biomarker concentrations in linear mixed-effect regression models taking the clustering within the kindergartens into account. The results are presented as standardized effect sizes.
We found significant effects of the intervention on the following biomarkers: RBC EPA (20:5n–3), 0.61 (95% CI: 0.36, 0.86); DHA (22:6n–3), 0.43 (95% CI: 0.21, 0.66); total n–3 PUFAs, 0.41 (95% CI: 0.20, 0.64); n–3/n–6 ratio, 0.48 (95% CI: 0.24, 0.71); adrenic acid (22:4n–6, −0.65 (95% CI: −0.91, −0.40), arachidonic acid (20:4n–6), −0.54 (95% CI: −0.79, −0.28); total n–6 PUFAs, −0.31 (95% CI: −0.56, −0.06); UIC, 0.32 (95% CI: 0.052, 0.59); hair mercury, 0.83 (95% CI: 0.05, 1.05); and plasma 1-MH, −0.35 (95% CI: −0.61, −0.094).
Of the 86 biomarkers, the strongest effect of fatty fish intake was on n–3 PUFAs, UIC, hair mercury, and plasma 1-MH. We observed no or limited effects on biomarkers related to micronutrient status, inflammation, or essential amino acid, choline oxidation, and tryptophan pathways.
The trial was registered at clinicaltrials.gov (NCT02331667).</description><subject>1-methylhistidine</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Arachidonic acid</subject><subject>Bioaccumulation</subject><subject>Biomarkers</subject><subject>Cattle</subject><subject>Child, Preschool</subject><subject>Children</subject><subject>Children & youth</subject><subject>Childrens health</subject><subject>Choline</subject><subject>Clinical trials</subject><subject>Clustering</subject><subject>Diet</subject><subject>Docosahexaenoic Acids</subject><subject>Fatty acids</subject><subject>Fatty Acids, Omega-3</subject><subject>fatty fish</subject><subject>Fish</subject><subject>Fishes</subject><subject>Food intake</subject><subject>Hair</subject><subject>Humans</subject><subject>Inflammation</subject><subject>Iodine</subject><subject>Kindergarten</subject><subject>Life Sciences & Biomedicine</subject><subject>Mackerel</subject><subject>Meals</subject><subject>Meat</subject><subject>Mercury</subject><subject>Nutrient Physiology, Metabolism, and Nutrient-Nutrient Interactions</subject><subject>Nutrition</subject><subject>Nutrition & Dietetics</subject><subject>omega-3</subject><subject>Oxidation</subject><subject>Pediatrics</subject><subject>polyunsaturated fatty acids</subject><subject>Preschool children</subject><subject>Regression analysis</subject><subject>Regression models</subject><subject>Science & Technology</subject><subject>Seafood</subject><subject>Sheep</subject><subject>Studies</subject><subject>targeted metabolomics</subject><subject>Trimethylamine</subject><subject>Tryptophan</subject><subject>Water pollution effects</subject><issn>0022-3166</issn><issn>1541-6100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>EIF</sourceid><recordid>eNqNkV9rFDEUxYModlt98QNIwBepjM2dZP6kD0IdXC0UFanPIZO50812NqlJtrV-erPsuqj44FMu3N89OYdDyDNgr4FJfrJ0J-677gHKB2QGlYCiBsYekhljZVlwqOsDchjjkjEGQraPyQHnsmmhZjOi3lq_0uEaQ6TaDXSuU7qncxsX9NwlfY2n9Ix-yRu_sj9woJ13KfhpyuNlsHqi1tGPPtzhldWOfg4YzcL7iXYLOw0B3RPyaNRTxKe794h8nb-77D4UF5_en3dnF4URFaQCahAoDfScl5KNshSjlA1r-roRPZeoez3qtjasxh7aSssedCNhRF0h4yj4EXmz1b1Z9yscDGabelI3weZ098prq_7cOLtQV_5WtVxIAJkFXu4Egv-2xpjUykaD06Qd-nVUZVVmj1wKyOiLv9ClXweX42WqZm3DodoIHm8pE3yMAce9GWBq05taOrXrLcPPf7e_R38VlYFXW-AOez9GY9EZ3GO52fxpjsI3HW_o9v_pziadrHedX7uUT8X2FHNbtxaD2p0PNqBJavD2XwF-AmWHx9Q</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Solvik, Beate S</creator><creator>Øyen, Jannike</creator><creator>Kvestad, Ingrid</creator><creator>Markhus, Maria W</creator><creator>Ueland, Per M</creator><creator>McCann, Adrian</creator><creator>Strand, Tor A</creator><general>Elsevier Inc</general><general>Oxford Univ Press</general><general>American Institute of Nutrition</general><general>Oxford University Press</general><scope>6I.</scope><scope>AAFTH</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-4838-0239</orcidid><orcidid>https://orcid.org/0000-0002-0196-5387</orcidid><orcidid>https://orcid.org/0000-0002-7737-1497</orcidid><orcidid>https://orcid.org/0000-0002-1903-0571</orcidid><orcidid>https://orcid.org/0000-0002-5590-5136</orcidid><orcidid>https://orcid.org/0000-0002-5728-5321</orcidid><orcidid>https://orcid.org/0000-0002-4038-151X</orcidid></search><sort><creationdate>20210801</creationdate><title>Biomarkers and Fatty Fish Intake: A Randomized Controlled Trial in Norwegian Preschool Children</title><author>Solvik, Beate S ; Øyen, Jannike ; Kvestad, Ingrid ; Markhus, Maria W ; Ueland, Per M ; McCann, Adrian ; Strand, Tor A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-1614e9c1b33290f924f99707b674b39eabafa86c06eb185a9b1a791fea5e03e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>1-methylhistidine</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Arachidonic acid</topic><topic>Bioaccumulation</topic><topic>Biomarkers</topic><topic>Cattle</topic><topic>Child, Preschool</topic><topic>Children</topic><topic>Children & youth</topic><topic>Childrens health</topic><topic>Choline</topic><topic>Clinical trials</topic><topic>Clustering</topic><topic>Diet</topic><topic>Docosahexaenoic Acids</topic><topic>Fatty acids</topic><topic>Fatty Acids, Omega-3</topic><topic>fatty fish</topic><topic>Fish</topic><topic>Fishes</topic><topic>Food intake</topic><topic>Hair</topic><topic>Humans</topic><topic>Inflammation</topic><topic>Iodine</topic><topic>Kindergarten</topic><topic>Life Sciences & Biomedicine</topic><topic>Mackerel</topic><topic>Meals</topic><topic>Meat</topic><topic>Mercury</topic><topic>Nutrient Physiology, Metabolism, and Nutrient-Nutrient Interactions</topic><topic>Nutrition</topic><topic>Nutrition & Dietetics</topic><topic>omega-3</topic><topic>Oxidation</topic><topic>Pediatrics</topic><topic>polyunsaturated fatty acids</topic><topic>Preschool children</topic><topic>Regression analysis</topic><topic>Regression models</topic><topic>Science & Technology</topic><topic>Seafood</topic><topic>Sheep</topic><topic>Studies</topic><topic>targeted metabolomics</topic><topic>Trimethylamine</topic><topic>Tryptophan</topic><topic>Water pollution effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solvik, Beate S</creatorcontrib><creatorcontrib>Øyen, Jannike</creatorcontrib><creatorcontrib>Kvestad, Ingrid</creatorcontrib><creatorcontrib>Markhus, Maria W</creatorcontrib><creatorcontrib>Ueland, Per M</creatorcontrib><creatorcontrib>McCann, Adrian</creatorcontrib><creatorcontrib>Strand, Tor A</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of nutrition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solvik, Beate S</au><au>Øyen, Jannike</au><au>Kvestad, Ingrid</au><au>Markhus, Maria W</au><au>Ueland, Per M</au><au>McCann, Adrian</au><au>Strand, Tor A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomarkers and Fatty Fish Intake: A Randomized Controlled Trial in Norwegian Preschool Children</atitle><jtitle>The Journal of nutrition</jtitle><stitle>J NUTR</stitle><addtitle>J Nutr</addtitle><date>2021-08-01</date><risdate>2021</risdate><volume>151</volume><issue>8</issue><spage>2134</spage><epage>2141</epage><pages>2134-2141</pages><issn>0022-3166</issn><eissn>1541-6100</eissn><abstract>Biomarkers such as omega-3 (n–3) PUFAs, urinary iodine concentration (UIC), 1-methylhistidine (1-MH), and trimethylamine N-oxide (TMAO) have been associated with fish intake in observational studies, but data from children in randomized controlled trials are limited.
The objective of this exploratory analysis was to investigate the effects of fatty fish intake compared with meat intake on various biomarkers in preschool children.
We randomly allocated (1:1) 232 children, aged 4 to 6 y, from 13 kindergartens. The children received lunch meals of either fatty fish (herring/mackerel) or meat (chicken/lamb/beef) 3 times a week for 16 wk. We analyzed 86 biomarkers in plasma (n = 207), serum (n = 195), RBCs (n = 211), urine (n = 200), and hair samples (n = 210). We measured the effects of the intervention on the normalized biomarker concentrations in linear mixed-effect regression models taking the clustering within the kindergartens into account. The results are presented as standardized effect sizes.
We found significant effects of the intervention on the following biomarkers: RBC EPA (20:5n–3), 0.61 (95% CI: 0.36, 0.86); DHA (22:6n–3), 0.43 (95% CI: 0.21, 0.66); total n–3 PUFAs, 0.41 (95% CI: 0.20, 0.64); n–3/n–6 ratio, 0.48 (95% CI: 0.24, 0.71); adrenic acid (22:4n–6, −0.65 (95% CI: −0.91, −0.40), arachidonic acid (20:4n–6), −0.54 (95% CI: −0.79, −0.28); total n–6 PUFAs, −0.31 (95% CI: −0.56, −0.06); UIC, 0.32 (95% CI: 0.052, 0.59); hair mercury, 0.83 (95% CI: 0.05, 1.05); and plasma 1-MH, −0.35 (95% CI: −0.61, −0.094).
Of the 86 biomarkers, the strongest effect of fatty fish intake was on n–3 PUFAs, UIC, hair mercury, and plasma 1-MH. We observed no or limited effects on biomarkers related to micronutrient status, inflammation, or essential amino acid, choline oxidation, and tryptophan pathways.
The trial was registered at clinicaltrials.gov (NCT02331667).</abstract><cop>OXFORD</cop><pub>Elsevier Inc</pub><pmid>33978160</pmid><doi>10.1093/jn/nxab112</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-4838-0239</orcidid><orcidid>https://orcid.org/0000-0002-0196-5387</orcidid><orcidid>https://orcid.org/0000-0002-7737-1497</orcidid><orcidid>https://orcid.org/0000-0002-1903-0571</orcidid><orcidid>https://orcid.org/0000-0002-5590-5136</orcidid><orcidid>https://orcid.org/0000-0002-5728-5321</orcidid><orcidid>https://orcid.org/0000-0002-4038-151X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3166 |
ispartof | The Journal of nutrition, 2021-08, Vol.151 (8), p.2134-2141 |
issn | 0022-3166 1541-6100 |
language | eng |
recordid | cdi_proquest_journals_2560873159 |
source | MEDLINE; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | 1-methylhistidine Amino acids Animals Arachidonic acid Bioaccumulation Biomarkers Cattle Child, Preschool Children Children & youth Childrens health Choline Clinical trials Clustering Diet Docosahexaenoic Acids Fatty acids Fatty Acids, Omega-3 fatty fish Fish Fishes Food intake Hair Humans Inflammation Iodine Kindergarten Life Sciences & Biomedicine Mackerel Meals Meat Mercury Nutrient Physiology, Metabolism, and Nutrient-Nutrient Interactions Nutrition Nutrition & Dietetics omega-3 Oxidation Pediatrics polyunsaturated fatty acids Preschool children Regression analysis Regression models Science & Technology Seafood Sheep Studies targeted metabolomics Trimethylamine Tryptophan Water pollution effects |
title | Biomarkers and Fatty Fish Intake: A Randomized Controlled Trial in Norwegian Preschool Children |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T05%3A20%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomarkers%20and%20Fatty%20Fish%20Intake:%20A%20Randomized%20Controlled%20Trial%20in%20Norwegian%20Preschool%20Children&rft.jtitle=The%20Journal%20of%20nutrition&rft.au=Solvik,%20Beate%20S&rft.date=2021-08-01&rft.volume=151&rft.issue=8&rft.spage=2134&rft.epage=2141&rft.pages=2134-2141&rft.issn=0022-3166&rft.eissn=1541-6100&rft_id=info:doi/10.1093/jn/nxab112&rft_dat=%3Cproquest_pubme%3E2526143941%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560873159&rft_id=info:pmid/33978160&rft_els_id=S0022316622002760&rfr_iscdi=true |