Operator algebras for higher rank analysis and their application to factorial languages

We study strong compactly aligned product systems of ℤ + N over a C*-algebra A . We provide a description of their Cuntz-Nica-Pimsner algebra in terms of tractable relations coming from ideals of A . This approach encompasses product systems where the left action is given by compacts, as well as a w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 2021-06, Vol.143 (2), p.555-613
Hauptverfasser: Dor-On, Adam, Kakariadis, Evgenios T. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 613
container_issue 2
container_start_page 555
container_title Journal d'analyse mathématique (Jerusalem)
container_volume 143
creator Dor-On, Adam
Kakariadis, Evgenios T. A.
description We study strong compactly aligned product systems of ℤ + N over a C*-algebra A . We provide a description of their Cuntz-Nica-Pimsner algebra in terms of tractable relations coming from ideals of A . This approach encompasses product systems where the left action is given by compacts, as well as a wide class of higher rank graphs (beyond row-finite). Moreover we analyze higher rank factorial languages and their C*-algebras. Many of the rank one results in the literature find here their higher rank analogues. In particular, we show that the Cuntz-Nica-Pimsner algebra of a higher rank sofic language coincides with the Cuntz-Krieger algebra of its unlabeled follower set higher rank graph. However, there are also differences. For example, the Cuntz-Nica-Pimsner can lie in-between the first quantization and its quotient by the compactly supported operators.
doi_str_mv 10.1007/s11854-021-0163-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560852692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560852692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f86cb23d6cef9ea8fbd03bec891061354aa81b752506833aaf14d80025cefabb3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9F8bNL0KItfsLAXxWOYpEk3a21r0j34781SwZOnmWHe92XmQeia0VtGaXWXGdNyRShnhDIliDpBCyaVJFoKfYoW9LipVEXP0UXOe0qlrAVfoPft6BNMQ8LQtd4myDiUYRfbnU84Qf-BoYfuO8dcmgZPOx-Ldhy76GCKQ4-nAQdwJSFChzvo2wO0Pl-iswBd9le_dYneHh9e189ks316Wd9viBOynkjQylkuGuV8qD3oYBsqrHe6ZlQxIVcAmtlKckmVFgIgsFWjyzOyGMBasUQ3c-6Yhq-Dz5PZD4dULs6GS0W15KrmRcVmlUtDzskHM6b4CenbMGqO_MzMzxRK5sjPqOLhsycXbd_69Jf8v-kHfx1z9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560852692</pqid></control><display><type>article</type><title>Operator algebras for higher rank analysis and their application to factorial languages</title><source>SpringerLink Journals</source><creator>Dor-On, Adam ; Kakariadis, Evgenios T. A.</creator><creatorcontrib>Dor-On, Adam ; Kakariadis, Evgenios T. A.</creatorcontrib><description>We study strong compactly aligned product systems of ℤ + N over a C*-algebra A . We provide a description of their Cuntz-Nica-Pimsner algebra in terms of tractable relations coming from ideals of A . This approach encompasses product systems where the left action is given by compacts, as well as a wide class of higher rank graphs (beyond row-finite). Moreover we analyze higher rank factorial languages and their C*-algebras. Many of the rank one results in the literature find here their higher rank analogues. In particular, we show that the Cuntz-Nica-Pimsner algebra of a higher rank sofic language coincides with the Cuntz-Krieger algebra of its unlabeled follower set higher rank graph. However, there are also differences. For example, the Cuntz-Nica-Pimsner can lie in-between the first quantization and its quotient by the compactly supported operators.</description><identifier>ISSN: 0021-7670</identifier><identifier>EISSN: 1565-8538</identifier><identifier>DOI: 10.1007/s11854-021-0163-6</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Abstract Harmonic Analysis ; Algebra ; Analysis ; Compacts ; Dynamical Systems and Ergodic Theory ; Functional Analysis ; Languages ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Partial Differential Equations ; Quotients</subject><ispartof>Journal d'analyse mathématique (Jerusalem), 2021-06, Vol.143 (2), p.555-613</ispartof><rights>The Hebrew University of Jerusalem 2021</rights><rights>The Hebrew University of Jerusalem 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f86cb23d6cef9ea8fbd03bec891061354aa81b752506833aaf14d80025cefabb3</citedby><cites>FETCH-LOGICAL-c359t-f86cb23d6cef9ea8fbd03bec891061354aa81b752506833aaf14d80025cefabb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11854-021-0163-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11854-021-0163-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Dor-On, Adam</creatorcontrib><creatorcontrib>Kakariadis, Evgenios T. A.</creatorcontrib><title>Operator algebras for higher rank analysis and their application to factorial languages</title><title>Journal d'analyse mathématique (Jerusalem)</title><addtitle>JAMA</addtitle><description>We study strong compactly aligned product systems of ℤ + N over a C*-algebra A . We provide a description of their Cuntz-Nica-Pimsner algebra in terms of tractable relations coming from ideals of A . This approach encompasses product systems where the left action is given by compacts, as well as a wide class of higher rank graphs (beyond row-finite). Moreover we analyze higher rank factorial languages and their C*-algebras. Many of the rank one results in the literature find here their higher rank analogues. In particular, we show that the Cuntz-Nica-Pimsner algebra of a higher rank sofic language coincides with the Cuntz-Krieger algebra of its unlabeled follower set higher rank graph. However, there are also differences. For example, the Cuntz-Nica-Pimsner can lie in-between the first quantization and its quotient by the compactly supported operators.</description><subject>Abstract Harmonic Analysis</subject><subject>Algebra</subject><subject>Analysis</subject><subject>Compacts</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Functional Analysis</subject><subject>Languages</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Partial Differential Equations</subject><subject>Quotients</subject><issn>0021-7670</issn><issn>1565-8538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9F8bNL0KItfsLAXxWOYpEk3a21r0j34781SwZOnmWHe92XmQeia0VtGaXWXGdNyRShnhDIliDpBCyaVJFoKfYoW9LipVEXP0UXOe0qlrAVfoPft6BNMQ8LQtd4myDiUYRfbnU84Qf-BoYfuO8dcmgZPOx-Ldhy76GCKQ4-nAQdwJSFChzvo2wO0Pl-iswBd9le_dYneHh9e189ks316Wd9viBOynkjQylkuGuV8qD3oYBsqrHe6ZlQxIVcAmtlKckmVFgIgsFWjyzOyGMBasUQ3c-6Yhq-Dz5PZD4dULs6GS0W15KrmRcVmlUtDzskHM6b4CenbMGqO_MzMzxRK5sjPqOLhsycXbd_69Jf8v-kHfx1z9Q</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Dor-On, Adam</creator><creator>Kakariadis, Evgenios T. A.</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20210601</creationdate><title>Operator algebras for higher rank analysis and their application to factorial languages</title><author>Dor-On, Adam ; Kakariadis, Evgenios T. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f86cb23d6cef9ea8fbd03bec891061354aa81b752506833aaf14d80025cefabb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Algebra</topic><topic>Analysis</topic><topic>Compacts</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Functional Analysis</topic><topic>Languages</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Partial Differential Equations</topic><topic>Quotients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dor-On, Adam</creatorcontrib><creatorcontrib>Kakariadis, Evgenios T. A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dor-On, Adam</au><au>Kakariadis, Evgenios T. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Operator algebras for higher rank analysis and their application to factorial languages</atitle><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle><stitle>JAMA</stitle><date>2021-06-01</date><risdate>2021</risdate><volume>143</volume><issue>2</issue><spage>555</spage><epage>613</epage><pages>555-613</pages><issn>0021-7670</issn><eissn>1565-8538</eissn><abstract>We study strong compactly aligned product systems of ℤ + N over a C*-algebra A . We provide a description of their Cuntz-Nica-Pimsner algebra in terms of tractable relations coming from ideals of A . This approach encompasses product systems where the left action is given by compacts, as well as a wide class of higher rank graphs (beyond row-finite). Moreover we analyze higher rank factorial languages and their C*-algebras. Many of the rank one results in the literature find here their higher rank analogues. In particular, we show that the Cuntz-Nica-Pimsner algebra of a higher rank sofic language coincides with the Cuntz-Krieger algebra of its unlabeled follower set higher rank graph. However, there are also differences. For example, the Cuntz-Nica-Pimsner can lie in-between the first quantization and its quotient by the compactly supported operators.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11854-021-0163-6</doi><tpages>59</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-7670
ispartof Journal d'analyse mathématique (Jerusalem), 2021-06, Vol.143 (2), p.555-613
issn 0021-7670
1565-8538
language eng
recordid cdi_proquest_journals_2560852692
source SpringerLink Journals
subjects Abstract Harmonic Analysis
Algebra
Analysis
Compacts
Dynamical Systems and Ergodic Theory
Functional Analysis
Languages
Mathematics
Mathematics and Statistics
Operators (mathematics)
Partial Differential Equations
Quotients
title Operator algebras for higher rank analysis and their application to factorial languages
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A23%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Operator%20algebras%20for%20higher%20rank%20analysis%20and%20their%20application%20to%20factorial%20languages&rft.jtitle=Journal%20d'analyse%20math%C3%A9matique%20(Jerusalem)&rft.au=Dor-On,%20Adam&rft.date=2021-06-01&rft.volume=143&rft.issue=2&rft.spage=555&rft.epage=613&rft.pages=555-613&rft.issn=0021-7670&rft.eissn=1565-8538&rft_id=info:doi/10.1007/s11854-021-0163-6&rft_dat=%3Cproquest_cross%3E2560852692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560852692&rft_id=info:pmid/&rfr_iscdi=true