Oscillatory- and sector-zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory rift, Tanzania

The Quaternary carbonatite–nephelinite Kerimasi volcano is located within the Gregory rift in northern Tanzania. It is composed of nephelinitic and carbonatitic pyroclastic rocks, tuffs, tuff breccias and pyroclastic breccias, which contain blocks of different plutonic (predominantly ijolite) and vo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mineralogical magazine 2021-08, Vol.85 (4), p.532-553
Hauptverfasser: Zaitsev, Anatoly N., Spratt, John, Shtukenberg, Alexander G., Zolotarev, Andrei A., Britvin, Sergey N., Petrov, Sergey V., Kuptsova, Alina V., Antonov, Anton V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 553
container_issue 4
container_start_page 532
container_title Mineralogical magazine
container_volume 85
creator Zaitsev, Anatoly N.
Spratt, John
Shtukenberg, Alexander G.
Zolotarev, Andrei A.
Britvin, Sergey N.
Petrov, Sergey V.
Kuptsova, Alina V.
Antonov, Anton V.
description The Quaternary carbonatite–nephelinite Kerimasi volcano is located within the Gregory rift in northern Tanzania. It is composed of nephelinitic and carbonatitic pyroclastic rocks, tuffs, tuff breccias and pyroclastic breccias, which contain blocks of different plutonic (predominantly ijolite) and volcanic (predominantly nephelinite) rocks including carbonatites. The plutonic and volcanic carbonatites both contain calcite as the major mineral with variable amounts of magnetite or magnesioferrite, apatite and forsterite. Carbonatites also contain accessory baddeleyite, kerimasite, pyrochlore and calzirtite. Zr and Nb minerals are rarely observed in rock samples, though they are abundant in eluvial deposits of carbonatite tuff/pyroclastic breccias in the Loluni and Kisete craters. Pyrochlore, ideally (CaNa)Nb 2 O 6 F, occurs as octahedral and cubo-octahedral crystals up to 300 μm in size. Compositionally, pyrochlore from Loluni and Kisete differs. The former is enriched in U (up to 19.4 wt.% UO 2 ), light rare earth elements (up to 8.3 wt.% LREE 2 O 3 ) and Zr (up to 14.4 wt.% ZrO 2 ), and the latter contains elevated Ti (up to 7.3 wt.% TiO 2 ). All the crystals investigated were crystalline, including those with high U content ( a = 10.4152(1) Å for Loluni and a = 10.3763(1) Å for Kisete crystals). They have little or no subsolidus alteration nor low-temperature cation exchange ( A -site vacancy up to 1.5% of the site), and are suitable for single-crystal X-ray diffraction analysis ( R 1 = 0.0206 and 0.0290; for all independent reflections for Loluni and Kisete crystals, respectively). Observed variations in the pyrochlore composition, particularly Zr content, from the Loluni and Kisete craters suggest crystallisation from compositionally different carbonatitic melts. The majority of pyrochlore crystals studied exhibit exceptionally well-preserved oscillatory- and sometimes sector-type zoning. The preferential incorporation of smaller and higher charged elements into more geometrically constrained sites on the growing surfaces explains the formation of the sector zoning. The oscillatory zoning can be rationalised by considering convectional instabilities of carbonatite magmas during their emplacement.
doi_str_mv 10.1180/mgm.2020.101
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560608828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560608828</sourcerecordid><originalsourceid>FETCH-LOGICAL-a286t-75d3b6d01918c57139f8bcd0134246d9d0e5dba1aeb782aef4cbe2e63da6b0c53</originalsourceid><addsrcrecordid>eNotkMFKw0AQhhdRsFZvPsCC16bubJLN9ihFq1jopYK3MNmdtClJtu6mQvv0bqmn4Rt-_mE-xh5BTAG0eO423VQKGUnAFRtBVkCihZTXbCSEVEmm4PuW3YWwEwIyyOWI7VbBNG2Lg_PHhGNveSATITm5nizfH70z29Z54rV3HTfoK9fj0AwUuKv5sCX-Sb7pMDT817UGezfhC0-b2Md9Uw8Tvsb-hH2D9-ymxjbQw_8cs6-31_X8PVmuFh_zl2WCUqshKXKbVsoKmIE2eQHprNaViZxmMlN2ZgXltkJAqgotkerMVCRJpRZVJUyejtnTpXfv3c-BwlDu3MH38WQpcyWU0FrqmJpcUsa7EDzV5f78hj-WIMqzzTLaLM824wLSP8lGabA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560608828</pqid></control><display><type>article</type><title>Oscillatory- and sector-zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory rift, Tanzania</title><source>Cambridge University Press Journals Complete</source><creator>Zaitsev, Anatoly N. ; Spratt, John ; Shtukenberg, Alexander G. ; Zolotarev, Andrei A. ; Britvin, Sergey N. ; Petrov, Sergey V. ; Kuptsova, Alina V. ; Antonov, Anton V.</creator><creatorcontrib>Zaitsev, Anatoly N. ; Spratt, John ; Shtukenberg, Alexander G. ; Zolotarev, Andrei A. ; Britvin, Sergey N. ; Petrov, Sergey V. ; Kuptsova, Alina V. ; Antonov, Anton V.</creatorcontrib><description>The Quaternary carbonatite–nephelinite Kerimasi volcano is located within the Gregory rift in northern Tanzania. It is composed of nephelinitic and carbonatitic pyroclastic rocks, tuffs, tuff breccias and pyroclastic breccias, which contain blocks of different plutonic (predominantly ijolite) and volcanic (predominantly nephelinite) rocks including carbonatites. The plutonic and volcanic carbonatites both contain calcite as the major mineral with variable amounts of magnetite or magnesioferrite, apatite and forsterite. Carbonatites also contain accessory baddeleyite, kerimasite, pyrochlore and calzirtite. Zr and Nb minerals are rarely observed in rock samples, though they are abundant in eluvial deposits of carbonatite tuff/pyroclastic breccias in the Loluni and Kisete craters. Pyrochlore, ideally (CaNa)Nb 2 O 6 F, occurs as octahedral and cubo-octahedral crystals up to 300 μm in size. Compositionally, pyrochlore from Loluni and Kisete differs. The former is enriched in U (up to 19.4 wt.% UO 2 ), light rare earth elements (up to 8.3 wt.% LREE 2 O 3 ) and Zr (up to 14.4 wt.% ZrO 2 ), and the latter contains elevated Ti (up to 7.3 wt.% TiO 2 ). All the crystals investigated were crystalline, including those with high U content ( a = 10.4152(1) Å for Loluni and a = 10.3763(1) Å for Kisete crystals). They have little or no subsolidus alteration nor low-temperature cation exchange ( A -site vacancy up to 1.5% of the site), and are suitable for single-crystal X-ray diffraction analysis ( R 1 = 0.0206 and 0.0290; for all independent reflections for Loluni and Kisete crystals, respectively). Observed variations in the pyrochlore composition, particularly Zr content, from the Loluni and Kisete craters suggest crystallisation from compositionally different carbonatitic melts. The majority of pyrochlore crystals studied exhibit exceptionally well-preserved oscillatory- and sometimes sector-type zoning. The preferential incorporation of smaller and higher charged elements into more geometrically constrained sites on the growing surfaces explains the formation of the sector zoning. The oscillatory zoning can be rationalised by considering convectional instabilities of carbonatite magmas during their emplacement.</description><identifier>ISSN: 0026-461X</identifier><identifier>EISSN: 1471-8022</identifier><identifier>DOI: 10.1180/mgm.2020.101</identifier><language>eng</language><publisher>London: Cambridge University Press</publisher><subject>Calcite ; Cation exchange ; Crystals ; Investigations ; Low temperature ; Minerals ; Museums ; Natural history ; Rare earth elements ; Rocks ; Titanium dioxide ; Volcanoes ; X-ray diffraction ; Zoning</subject><ispartof>Mineralogical magazine, 2021-08, Vol.85 (4), p.532-553</ispartof><rights>Copyright © The Author(s), 2020. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a286t-75d3b6d01918c57139f8bcd0134246d9d0e5dba1aeb782aef4cbe2e63da6b0c53</citedby><cites>FETCH-LOGICAL-a286t-75d3b6d01918c57139f8bcd0134246d9d0e5dba1aeb782aef4cbe2e63da6b0c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zaitsev, Anatoly N.</creatorcontrib><creatorcontrib>Spratt, John</creatorcontrib><creatorcontrib>Shtukenberg, Alexander G.</creatorcontrib><creatorcontrib>Zolotarev, Andrei A.</creatorcontrib><creatorcontrib>Britvin, Sergey N.</creatorcontrib><creatorcontrib>Petrov, Sergey V.</creatorcontrib><creatorcontrib>Kuptsova, Alina V.</creatorcontrib><creatorcontrib>Antonov, Anton V.</creatorcontrib><title>Oscillatory- and sector-zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory rift, Tanzania</title><title>Mineralogical magazine</title><description>The Quaternary carbonatite–nephelinite Kerimasi volcano is located within the Gregory rift in northern Tanzania. It is composed of nephelinitic and carbonatitic pyroclastic rocks, tuffs, tuff breccias and pyroclastic breccias, which contain blocks of different plutonic (predominantly ijolite) and volcanic (predominantly nephelinite) rocks including carbonatites. The plutonic and volcanic carbonatites both contain calcite as the major mineral with variable amounts of magnetite or magnesioferrite, apatite and forsterite. Carbonatites also contain accessory baddeleyite, kerimasite, pyrochlore and calzirtite. Zr and Nb minerals are rarely observed in rock samples, though they are abundant in eluvial deposits of carbonatite tuff/pyroclastic breccias in the Loluni and Kisete craters. Pyrochlore, ideally (CaNa)Nb 2 O 6 F, occurs as octahedral and cubo-octahedral crystals up to 300 μm in size. Compositionally, pyrochlore from Loluni and Kisete differs. The former is enriched in U (up to 19.4 wt.% UO 2 ), light rare earth elements (up to 8.3 wt.% LREE 2 O 3 ) and Zr (up to 14.4 wt.% ZrO 2 ), and the latter contains elevated Ti (up to 7.3 wt.% TiO 2 ). All the crystals investigated were crystalline, including those with high U content ( a = 10.4152(1) Å for Loluni and a = 10.3763(1) Å for Kisete crystals). They have little or no subsolidus alteration nor low-temperature cation exchange ( A -site vacancy up to 1.5% of the site), and are suitable for single-crystal X-ray diffraction analysis ( R 1 = 0.0206 and 0.0290; for all independent reflections for Loluni and Kisete crystals, respectively). Observed variations in the pyrochlore composition, particularly Zr content, from the Loluni and Kisete craters suggest crystallisation from compositionally different carbonatitic melts. The majority of pyrochlore crystals studied exhibit exceptionally well-preserved oscillatory- and sometimes sector-type zoning. The preferential incorporation of smaller and higher charged elements into more geometrically constrained sites on the growing surfaces explains the formation of the sector zoning. The oscillatory zoning can be rationalised by considering convectional instabilities of carbonatite magmas during their emplacement.</description><subject>Calcite</subject><subject>Cation exchange</subject><subject>Crystals</subject><subject>Investigations</subject><subject>Low temperature</subject><subject>Minerals</subject><subject>Museums</subject><subject>Natural history</subject><subject>Rare earth elements</subject><subject>Rocks</subject><subject>Titanium dioxide</subject><subject>Volcanoes</subject><subject>X-ray diffraction</subject><subject>Zoning</subject><issn>0026-461X</issn><issn>1471-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNotkMFKw0AQhhdRsFZvPsCC16bubJLN9ihFq1jopYK3MNmdtClJtu6mQvv0bqmn4Rt-_mE-xh5BTAG0eO423VQKGUnAFRtBVkCihZTXbCSEVEmm4PuW3YWwEwIyyOWI7VbBNG2Lg_PHhGNveSATITm5nizfH70z29Z54rV3HTfoK9fj0AwUuKv5sCX-Sb7pMDT817UGezfhC0-b2Md9Uw8Tvsb-hH2D9-ymxjbQw_8cs6-31_X8PVmuFh_zl2WCUqshKXKbVsoKmIE2eQHprNaViZxmMlN2ZgXltkJAqgotkerMVCRJpRZVJUyejtnTpXfv3c-BwlDu3MH38WQpcyWU0FrqmJpcUsa7EDzV5f78hj-WIMqzzTLaLM824wLSP8lGabA</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Zaitsev, Anatoly N.</creator><creator>Spratt, John</creator><creator>Shtukenberg, Alexander G.</creator><creator>Zolotarev, Andrei A.</creator><creator>Britvin, Sergey N.</creator><creator>Petrov, Sergey V.</creator><creator>Kuptsova, Alina V.</creator><creator>Antonov, Anton V.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RQ</scope><scope>7XB</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>U9A</scope></search><sort><creationdate>202108</creationdate><title>Oscillatory- and sector-zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory rift, Tanzania</title><author>Zaitsev, Anatoly N. ; Spratt, John ; Shtukenberg, Alexander G. ; Zolotarev, Andrei A. ; Britvin, Sergey N. ; Petrov, Sergey V. ; Kuptsova, Alina V. ; Antonov, Anton V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a286t-75d3b6d01918c57139f8bcd0134246d9d0e5dba1aeb782aef4cbe2e63da6b0c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Calcite</topic><topic>Cation exchange</topic><topic>Crystals</topic><topic>Investigations</topic><topic>Low temperature</topic><topic>Minerals</topic><topic>Museums</topic><topic>Natural history</topic><topic>Rare earth elements</topic><topic>Rocks</topic><topic>Titanium dioxide</topic><topic>Volcanoes</topic><topic>X-ray diffraction</topic><topic>Zoning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaitsev, Anatoly N.</creatorcontrib><creatorcontrib>Spratt, John</creatorcontrib><creatorcontrib>Shtukenberg, Alexander G.</creatorcontrib><creatorcontrib>Zolotarev, Andrei A.</creatorcontrib><creatorcontrib>Britvin, Sergey N.</creatorcontrib><creatorcontrib>Petrov, Sergey V.</creatorcontrib><creatorcontrib>Kuptsova, Alina V.</creatorcontrib><creatorcontrib>Antonov, Anton V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Career &amp; Technical Education Database</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Mineralogical magazine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaitsev, Anatoly N.</au><au>Spratt, John</au><au>Shtukenberg, Alexander G.</au><au>Zolotarev, Andrei A.</au><au>Britvin, Sergey N.</au><au>Petrov, Sergey V.</au><au>Kuptsova, Alina V.</au><au>Antonov, Anton V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oscillatory- and sector-zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory rift, Tanzania</atitle><jtitle>Mineralogical magazine</jtitle><date>2021-08</date><risdate>2021</risdate><volume>85</volume><issue>4</issue><spage>532</spage><epage>553</epage><pages>532-553</pages><issn>0026-461X</issn><eissn>1471-8022</eissn><abstract>The Quaternary carbonatite–nephelinite Kerimasi volcano is located within the Gregory rift in northern Tanzania. It is composed of nephelinitic and carbonatitic pyroclastic rocks, tuffs, tuff breccias and pyroclastic breccias, which contain blocks of different plutonic (predominantly ijolite) and volcanic (predominantly nephelinite) rocks including carbonatites. The plutonic and volcanic carbonatites both contain calcite as the major mineral with variable amounts of magnetite or magnesioferrite, apatite and forsterite. Carbonatites also contain accessory baddeleyite, kerimasite, pyrochlore and calzirtite. Zr and Nb minerals are rarely observed in rock samples, though they are abundant in eluvial deposits of carbonatite tuff/pyroclastic breccias in the Loluni and Kisete craters. Pyrochlore, ideally (CaNa)Nb 2 O 6 F, occurs as octahedral and cubo-octahedral crystals up to 300 μm in size. Compositionally, pyrochlore from Loluni and Kisete differs. The former is enriched in U (up to 19.4 wt.% UO 2 ), light rare earth elements (up to 8.3 wt.% LREE 2 O 3 ) and Zr (up to 14.4 wt.% ZrO 2 ), and the latter contains elevated Ti (up to 7.3 wt.% TiO 2 ). All the crystals investigated were crystalline, including those with high U content ( a = 10.4152(1) Å for Loluni and a = 10.3763(1) Å for Kisete crystals). They have little or no subsolidus alteration nor low-temperature cation exchange ( A -site vacancy up to 1.5% of the site), and are suitable for single-crystal X-ray diffraction analysis ( R 1 = 0.0206 and 0.0290; for all independent reflections for Loluni and Kisete crystals, respectively). Observed variations in the pyrochlore composition, particularly Zr content, from the Loluni and Kisete craters suggest crystallisation from compositionally different carbonatitic melts. The majority of pyrochlore crystals studied exhibit exceptionally well-preserved oscillatory- and sometimes sector-type zoning. The preferential incorporation of smaller and higher charged elements into more geometrically constrained sites on the growing surfaces explains the formation of the sector zoning. The oscillatory zoning can be rationalised by considering convectional instabilities of carbonatite magmas during their emplacement.</abstract><cop>London</cop><pub>Cambridge University Press</pub><doi>10.1180/mgm.2020.101</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0026-461X
ispartof Mineralogical magazine, 2021-08, Vol.85 (4), p.532-553
issn 0026-461X
1471-8022
language eng
recordid cdi_proquest_journals_2560608828
source Cambridge University Press Journals Complete
subjects Calcite
Cation exchange
Crystals
Investigations
Low temperature
Minerals
Museums
Natural history
Rare earth elements
Rocks
Titanium dioxide
Volcanoes
X-ray diffraction
Zoning
title Oscillatory- and sector-zoned pyrochlore from carbonatites of the Kerimasi volcano, Gregory rift, Tanzania
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A12%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oscillatory-%20and%20sector-zoned%20pyrochlore%20from%20carbonatites%20of%20the%20Kerimasi%20volcano,%20Gregory%20rift,%20Tanzania&rft.jtitle=Mineralogical%20magazine&rft.au=Zaitsev,%20Anatoly%20N.&rft.date=2021-08&rft.volume=85&rft.issue=4&rft.spage=532&rft.epage=553&rft.pages=532-553&rft.issn=0026-461X&rft.eissn=1471-8022&rft_id=info:doi/10.1180/mgm.2020.101&rft_dat=%3Cproquest_cross%3E2560608828%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560608828&rft_id=info:pmid/&rfr_iscdi=true