New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second‐order spatio‐temporal dispersion via double Laplace transform method
In this paper, a modified nonlinear Schrödinger equation with spatiotemporal dispersion is formulated in the senses of Caputo fractional derivative and conformable derivative. A new generalized double Laplace transform coupled with Adomian decomposition method has been defined and applied to solve t...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2021-09, Vol.44 (14), p.11138-11156 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11156 |
---|---|
container_issue | 14 |
container_start_page | 11138 |
container_title | Mathematical methods in the applied sciences |
container_volume | 44 |
creator | Kaabar, Mohammed K. A. Martínez, Francisco Gómez‐Aguilar, José Francisco Ghanbari, Behzad Kaplan, Melike Günerhan, Hatira |
description | In this paper, a modified nonlinear Schrödinger equation with spatiotemporal dispersion is formulated in the senses of Caputo fractional derivative and conformable derivative. A new generalized double Laplace transform coupled with Adomian decomposition method has been defined and applied to solve the newly formulated nonlinear Schrödinger equation with spatiotemporal dispersion. The approximate analytical solutions are obtained and compared with each other graphically. |
doi_str_mv | 10.1002/mma.7476 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560492791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560492791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-55ef4beba35c4513c7d8c8dfd88f2456ae5e73c7be3881ec574d64d5d07a08083</originalsourceid><addsrcrecordid>eNp1kcFO3DAQhi0EEgtU6iNY6qWXbO3ETpwjQgUqLe0BOEez9qRrlMTBdrrsjUfog3DuC_RNeJI6Xa6cbP__NzPy_IR85GzJGcu_9D0sK1GVB2TBWV1nPN0PyYLximUi5-KYnITwwBhTnOcL8vIdtxTG0bsn20NECgN0u2g1dDS4borWDYG2ztO4QTq4obMDgqetBz17CbvVG__3j7HDT_QUHyeYdbq1cUMDajeY1-ffzptkhnH20jNiPzqfao0NI_owF_yyQI2b1h3SFYwdaKTRwxDS7J72GDfOnJGjFrqAH97OU3J_-fXu4jpb_bj6dnG-ynReF2UmJbZijWsopBaSF7oySivTGqXaXMgSUGKV1DUWSnHUshKmFEYaVgFTTBWn5NO-b1rL44QhNg9u8umvocllyUSdVzVP1Oc9pb0LwWPbjD7t0O8azpo5iyZl0cxZJDTbo1vb4e5drrm5Of_P_wMP0JMR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560492791</pqid></control><display><type>article</type><title>New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second‐order spatio‐temporal dispersion via double Laplace transform method</title><source>Access via Wiley Online Library</source><creator>Kaabar, Mohammed K. A. ; Martínez, Francisco ; Gómez‐Aguilar, José Francisco ; Ghanbari, Behzad ; Kaplan, Melike ; Günerhan, Hatira</creator><creatorcontrib>Kaabar, Mohammed K. A. ; Martínez, Francisco ; Gómez‐Aguilar, José Francisco ; Ghanbari, Behzad ; Kaplan, Melike ; Günerhan, Hatira</creatorcontrib><description>In this paper, a modified nonlinear Schrödinger equation with spatiotemporal dispersion is formulated in the senses of Caputo fractional derivative and conformable derivative. A new generalized double Laplace transform coupled with Adomian decomposition method has been defined and applied to solve the newly formulated nonlinear Schrödinger equation with spatiotemporal dispersion. The approximate analytical solutions are obtained and compared with each other graphically.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7476</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Caputo fractional derivative ; conformable derivative ; Dispersion ; double Laplace transform ; Exact solutions ; Laplace transforms ; nonlinear fractional Schrödinger equation ; Schrodinger equation</subject><ispartof>Mathematical methods in the applied sciences, 2021-09, Vol.44 (14), p.11138-11156</ispartof><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-55ef4beba35c4513c7d8c8dfd88f2456ae5e73c7be3881ec574d64d5d07a08083</citedby><cites>FETCH-LOGICAL-c2936-55ef4beba35c4513c7d8c8dfd88f2456ae5e73c7be3881ec574d64d5d07a08083</cites><orcidid>0000-0003-2260-0341 ; 0000-0001-9403-3767 ; 0000-0001-5700-9127 ; 0000-0002-3733-1239 ; 0000-0003-0158-168X ; 0000-0002-7802-477X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7476$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7476$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kaabar, Mohammed K. A.</creatorcontrib><creatorcontrib>Martínez, Francisco</creatorcontrib><creatorcontrib>Gómez‐Aguilar, José Francisco</creatorcontrib><creatorcontrib>Ghanbari, Behzad</creatorcontrib><creatorcontrib>Kaplan, Melike</creatorcontrib><creatorcontrib>Günerhan, Hatira</creatorcontrib><title>New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second‐order spatio‐temporal dispersion via double Laplace transform method</title><title>Mathematical methods in the applied sciences</title><description>In this paper, a modified nonlinear Schrödinger equation with spatiotemporal dispersion is formulated in the senses of Caputo fractional derivative and conformable derivative. A new generalized double Laplace transform coupled with Adomian decomposition method has been defined and applied to solve the newly formulated nonlinear Schrödinger equation with spatiotemporal dispersion. The approximate analytical solutions are obtained and compared with each other graphically.</description><subject>Caputo fractional derivative</subject><subject>conformable derivative</subject><subject>Dispersion</subject><subject>double Laplace transform</subject><subject>Exact solutions</subject><subject>Laplace transforms</subject><subject>nonlinear fractional Schrödinger equation</subject><subject>Schrodinger equation</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kcFO3DAQhi0EEgtU6iNY6qWXbO3ETpwjQgUqLe0BOEez9qRrlMTBdrrsjUfog3DuC_RNeJI6Xa6cbP__NzPy_IR85GzJGcu_9D0sK1GVB2TBWV1nPN0PyYLximUi5-KYnITwwBhTnOcL8vIdtxTG0bsn20NECgN0u2g1dDS4borWDYG2ztO4QTq4obMDgqetBz17CbvVG__3j7HDT_QUHyeYdbq1cUMDajeY1-ffzptkhnH20jNiPzqfao0NI_owF_yyQI2b1h3SFYwdaKTRwxDS7J72GDfOnJGjFrqAH97OU3J_-fXu4jpb_bj6dnG-ynReF2UmJbZijWsopBaSF7oySivTGqXaXMgSUGKV1DUWSnHUshKmFEYaVgFTTBWn5NO-b1rL44QhNg9u8umvocllyUSdVzVP1Oc9pb0LwWPbjD7t0O8azpo5iyZl0cxZJDTbo1vb4e5drrm5Of_P_wMP0JMR</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Kaabar, Mohammed K. A.</creator><creator>Martínez, Francisco</creator><creator>Gómez‐Aguilar, José Francisco</creator><creator>Ghanbari, Behzad</creator><creator>Kaplan, Melike</creator><creator>Günerhan, Hatira</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-2260-0341</orcidid><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid><orcidid>https://orcid.org/0000-0001-5700-9127</orcidid><orcidid>https://orcid.org/0000-0002-3733-1239</orcidid><orcidid>https://orcid.org/0000-0003-0158-168X</orcidid><orcidid>https://orcid.org/0000-0002-7802-477X</orcidid></search><sort><creationdate>20210930</creationdate><title>New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second‐order spatio‐temporal dispersion via double Laplace transform method</title><author>Kaabar, Mohammed K. A. ; Martínez, Francisco ; Gómez‐Aguilar, José Francisco ; Ghanbari, Behzad ; Kaplan, Melike ; Günerhan, Hatira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-55ef4beba35c4513c7d8c8dfd88f2456ae5e73c7be3881ec574d64d5d07a08083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Caputo fractional derivative</topic><topic>conformable derivative</topic><topic>Dispersion</topic><topic>double Laplace transform</topic><topic>Exact solutions</topic><topic>Laplace transforms</topic><topic>nonlinear fractional Schrödinger equation</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaabar, Mohammed K. A.</creatorcontrib><creatorcontrib>Martínez, Francisco</creatorcontrib><creatorcontrib>Gómez‐Aguilar, José Francisco</creatorcontrib><creatorcontrib>Ghanbari, Behzad</creatorcontrib><creatorcontrib>Kaplan, Melike</creatorcontrib><creatorcontrib>Günerhan, Hatira</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaabar, Mohammed K. A.</au><au>Martínez, Francisco</au><au>Gómez‐Aguilar, José Francisco</au><au>Ghanbari, Behzad</au><au>Kaplan, Melike</au><au>Günerhan, Hatira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second‐order spatio‐temporal dispersion via double Laplace transform method</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-09-30</date><risdate>2021</risdate><volume>44</volume><issue>14</issue><spage>11138</spage><epage>11156</epage><pages>11138-11156</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, a modified nonlinear Schrödinger equation with spatiotemporal dispersion is formulated in the senses of Caputo fractional derivative and conformable derivative. A new generalized double Laplace transform coupled with Adomian decomposition method has been defined and applied to solve the newly formulated nonlinear Schrödinger equation with spatiotemporal dispersion. The approximate analytical solutions are obtained and compared with each other graphically.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7476</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2260-0341</orcidid><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid><orcidid>https://orcid.org/0000-0001-5700-9127</orcidid><orcidid>https://orcid.org/0000-0002-3733-1239</orcidid><orcidid>https://orcid.org/0000-0003-0158-168X</orcidid><orcidid>https://orcid.org/0000-0002-7802-477X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2021-09, Vol.44 (14), p.11138-11156 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_2560492791 |
source | Access via Wiley Online Library |
subjects | Caputo fractional derivative conformable derivative Dispersion double Laplace transform Exact solutions Laplace transforms nonlinear fractional Schrödinger equation Schrodinger equation |
title | New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second‐order spatio‐temporal dispersion via double Laplace transform method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20approximate%20analytical%20solutions%20for%20the%20nonlinear%20fractional%20Schr%C3%B6dinger%20equation%20with%20second%E2%80%90order%20spatio%E2%80%90temporal%20dispersion%20via%20double%20Laplace%20transform%20method&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Kaabar,%20Mohammed%20K.%20A.&rft.date=2021-09-30&rft.volume=44&rft.issue=14&rft.spage=11138&rft.epage=11156&rft.pages=11138-11156&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7476&rft_dat=%3Cproquest_cross%3E2560492791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560492791&rft_id=info:pmid/&rfr_iscdi=true |