New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second‐order spatio‐temporal dispersion via double Laplace transform method

In this paper, a modified nonlinear Schrödinger equation with spatiotemporal dispersion is formulated in the senses of Caputo fractional derivative and conformable derivative. A new generalized double Laplace transform coupled with Adomian decomposition method has been defined and applied to solve t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2021-09, Vol.44 (14), p.11138-11156
Hauptverfasser: Kaabar, Mohammed K. A., Martínez, Francisco, Gómez‐Aguilar, José Francisco, Ghanbari, Behzad, Kaplan, Melike, Günerhan, Hatira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11156
container_issue 14
container_start_page 11138
container_title Mathematical methods in the applied sciences
container_volume 44
creator Kaabar, Mohammed K. A.
Martínez, Francisco
Gómez‐Aguilar, José Francisco
Ghanbari, Behzad
Kaplan, Melike
Günerhan, Hatira
description In this paper, a modified nonlinear Schrödinger equation with spatiotemporal dispersion is formulated in the senses of Caputo fractional derivative and conformable derivative. A new generalized double Laplace transform coupled with Adomian decomposition method has been defined and applied to solve the newly formulated nonlinear Schrödinger equation with spatiotemporal dispersion. The approximate analytical solutions are obtained and compared with each other graphically.
doi_str_mv 10.1002/mma.7476
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560492791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560492791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2936-55ef4beba35c4513c7d8c8dfd88f2456ae5e73c7be3881ec574d64d5d07a08083</originalsourceid><addsrcrecordid>eNp1kcFO3DAQhi0EEgtU6iNY6qWXbO3ETpwjQgUqLe0BOEez9qRrlMTBdrrsjUfog3DuC_RNeJI6Xa6cbP__NzPy_IR85GzJGcu_9D0sK1GVB2TBWV1nPN0PyYLximUi5-KYnITwwBhTnOcL8vIdtxTG0bsn20NECgN0u2g1dDS4borWDYG2ztO4QTq4obMDgqetBz17CbvVG__3j7HDT_QUHyeYdbq1cUMDajeY1-ffzptkhnH20jNiPzqfao0NI_owF_yyQI2b1h3SFYwdaKTRwxDS7J72GDfOnJGjFrqAH97OU3J_-fXu4jpb_bj6dnG-ynReF2UmJbZijWsopBaSF7oySivTGqXaXMgSUGKV1DUWSnHUshKmFEYaVgFTTBWn5NO-b1rL44QhNg9u8umvocllyUSdVzVP1Oc9pb0LwWPbjD7t0O8azpo5iyZl0cxZJDTbo1vb4e5drrm5Of_P_wMP0JMR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560492791</pqid></control><display><type>article</type><title>New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second‐order spatio‐temporal dispersion via double Laplace transform method</title><source>Access via Wiley Online Library</source><creator>Kaabar, Mohammed K. A. ; Martínez, Francisco ; Gómez‐Aguilar, José Francisco ; Ghanbari, Behzad ; Kaplan, Melike ; Günerhan, Hatira</creator><creatorcontrib>Kaabar, Mohammed K. A. ; Martínez, Francisco ; Gómez‐Aguilar, José Francisco ; Ghanbari, Behzad ; Kaplan, Melike ; Günerhan, Hatira</creatorcontrib><description>In this paper, a modified nonlinear Schrödinger equation with spatiotemporal dispersion is formulated in the senses of Caputo fractional derivative and conformable derivative. A new generalized double Laplace transform coupled with Adomian decomposition method has been defined and applied to solve the newly formulated nonlinear Schrödinger equation with spatiotemporal dispersion. The approximate analytical solutions are obtained and compared with each other graphically.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.7476</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><subject>Caputo fractional derivative ; conformable derivative ; Dispersion ; double Laplace transform ; Exact solutions ; Laplace transforms ; nonlinear fractional Schrödinger equation ; Schrodinger equation</subject><ispartof>Mathematical methods in the applied sciences, 2021-09, Vol.44 (14), p.11138-11156</ispartof><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2936-55ef4beba35c4513c7d8c8dfd88f2456ae5e73c7be3881ec574d64d5d07a08083</citedby><cites>FETCH-LOGICAL-c2936-55ef4beba35c4513c7d8c8dfd88f2456ae5e73c7be3881ec574d64d5d07a08083</cites><orcidid>0000-0003-2260-0341 ; 0000-0001-9403-3767 ; 0000-0001-5700-9127 ; 0000-0002-3733-1239 ; 0000-0003-0158-168X ; 0000-0002-7802-477X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.7476$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.7476$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kaabar, Mohammed K. A.</creatorcontrib><creatorcontrib>Martínez, Francisco</creatorcontrib><creatorcontrib>Gómez‐Aguilar, José Francisco</creatorcontrib><creatorcontrib>Ghanbari, Behzad</creatorcontrib><creatorcontrib>Kaplan, Melike</creatorcontrib><creatorcontrib>Günerhan, Hatira</creatorcontrib><title>New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second‐order spatio‐temporal dispersion via double Laplace transform method</title><title>Mathematical methods in the applied sciences</title><description>In this paper, a modified nonlinear Schrödinger equation with spatiotemporal dispersion is formulated in the senses of Caputo fractional derivative and conformable derivative. A new generalized double Laplace transform coupled with Adomian decomposition method has been defined and applied to solve the newly formulated nonlinear Schrödinger equation with spatiotemporal dispersion. The approximate analytical solutions are obtained and compared with each other graphically.</description><subject>Caputo fractional derivative</subject><subject>conformable derivative</subject><subject>Dispersion</subject><subject>double Laplace transform</subject><subject>Exact solutions</subject><subject>Laplace transforms</subject><subject>nonlinear fractional Schrödinger equation</subject><subject>Schrodinger equation</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kcFO3DAQhi0EEgtU6iNY6qWXbO3ETpwjQgUqLe0BOEez9qRrlMTBdrrsjUfog3DuC_RNeJI6Xa6cbP__NzPy_IR85GzJGcu_9D0sK1GVB2TBWV1nPN0PyYLximUi5-KYnITwwBhTnOcL8vIdtxTG0bsn20NECgN0u2g1dDS4borWDYG2ztO4QTq4obMDgqetBz17CbvVG__3j7HDT_QUHyeYdbq1cUMDajeY1-ffzptkhnH20jNiPzqfao0NI_owF_yyQI2b1h3SFYwdaKTRwxDS7J72GDfOnJGjFrqAH97OU3J_-fXu4jpb_bj6dnG-ynReF2UmJbZijWsopBaSF7oySivTGqXaXMgSUGKV1DUWSnHUshKmFEYaVgFTTBWn5NO-b1rL44QhNg9u8umvocllyUSdVzVP1Oc9pb0LwWPbjD7t0O8azpo5iyZl0cxZJDTbo1vb4e5drrm5Of_P_wMP0JMR</recordid><startdate>20210930</startdate><enddate>20210930</enddate><creator>Kaabar, Mohammed K. A.</creator><creator>Martínez, Francisco</creator><creator>Gómez‐Aguilar, José Francisco</creator><creator>Ghanbari, Behzad</creator><creator>Kaplan, Melike</creator><creator>Günerhan, Hatira</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0003-2260-0341</orcidid><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid><orcidid>https://orcid.org/0000-0001-5700-9127</orcidid><orcidid>https://orcid.org/0000-0002-3733-1239</orcidid><orcidid>https://orcid.org/0000-0003-0158-168X</orcidid><orcidid>https://orcid.org/0000-0002-7802-477X</orcidid></search><sort><creationdate>20210930</creationdate><title>New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second‐order spatio‐temporal dispersion via double Laplace transform method</title><author>Kaabar, Mohammed K. A. ; Martínez, Francisco ; Gómez‐Aguilar, José Francisco ; Ghanbari, Behzad ; Kaplan, Melike ; Günerhan, Hatira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2936-55ef4beba35c4513c7d8c8dfd88f2456ae5e73c7be3881ec574d64d5d07a08083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Caputo fractional derivative</topic><topic>conformable derivative</topic><topic>Dispersion</topic><topic>double Laplace transform</topic><topic>Exact solutions</topic><topic>Laplace transforms</topic><topic>nonlinear fractional Schrödinger equation</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaabar, Mohammed K. A.</creatorcontrib><creatorcontrib>Martínez, Francisco</creatorcontrib><creatorcontrib>Gómez‐Aguilar, José Francisco</creatorcontrib><creatorcontrib>Ghanbari, Behzad</creatorcontrib><creatorcontrib>Kaplan, Melike</creatorcontrib><creatorcontrib>Günerhan, Hatira</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaabar, Mohammed K. A.</au><au>Martínez, Francisco</au><au>Gómez‐Aguilar, José Francisco</au><au>Ghanbari, Behzad</au><au>Kaplan, Melike</au><au>Günerhan, Hatira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second‐order spatio‐temporal dispersion via double Laplace transform method</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2021-09-30</date><risdate>2021</risdate><volume>44</volume><issue>14</issue><spage>11138</spage><epage>11156</epage><pages>11138-11156</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><abstract>In this paper, a modified nonlinear Schrödinger equation with spatiotemporal dispersion is formulated in the senses of Caputo fractional derivative and conformable derivative. A new generalized double Laplace transform coupled with Adomian decomposition method has been defined and applied to solve the newly formulated nonlinear Schrödinger equation with spatiotemporal dispersion. The approximate analytical solutions are obtained and compared with each other graphically.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.7476</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-2260-0341</orcidid><orcidid>https://orcid.org/0000-0001-9403-3767</orcidid><orcidid>https://orcid.org/0000-0001-5700-9127</orcidid><orcidid>https://orcid.org/0000-0002-3733-1239</orcidid><orcidid>https://orcid.org/0000-0003-0158-168X</orcidid><orcidid>https://orcid.org/0000-0002-7802-477X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2021-09, Vol.44 (14), p.11138-11156
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_2560492791
source Access via Wiley Online Library
subjects Caputo fractional derivative
conformable derivative
Dispersion
double Laplace transform
Exact solutions
Laplace transforms
nonlinear fractional Schrödinger equation
Schrodinger equation
title New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second‐order spatio‐temporal dispersion via double Laplace transform method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20approximate%20analytical%20solutions%20for%20the%20nonlinear%20fractional%20Schr%C3%B6dinger%20equation%20with%20second%E2%80%90order%20spatio%E2%80%90temporal%20dispersion%20via%20double%20Laplace%20transform%20method&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Kaabar,%20Mohammed%20K.%20A.&rft.date=2021-09-30&rft.volume=44&rft.issue=14&rft.spage=11138&rft.epage=11156&rft.pages=11138-11156&rft.issn=0170-4214&rft.eissn=1099-1476&rft_id=info:doi/10.1002/mma.7476&rft_dat=%3Cproquest_cross%3E2560492791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560492791&rft_id=info:pmid/&rfr_iscdi=true