LSTM integrated with Boruta-random forest optimiser for soil moisture estimation under RCP4.5 and RCP8.5 global warming scenarios
Future soil moisture (SM) estimation is a practically useful task for eco-hydrologists, agriculturists, and stakeholders in environment health monitoring to generate comprehensive understanding of hydro-physical and soil dynamic system. This paper demonstrates the capability of a hybridised long sho...
Gespeichert in:
Veröffentlicht in: | Stochastic environmental research and risk assessment 2021-09, Vol.35 (9), p.1851-1881 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1881 |
---|---|
container_issue | 9 |
container_start_page | 1851 |
container_title | Stochastic environmental research and risk assessment |
container_volume | 35 |
creator | Ahmed, A. A. Masrur Deo, Ravinesh C. Ghahramani, Afshin Raj, Nawin Feng, Qi Yin, Zhenliang Yang, Linshan |
description | Future soil moisture (SM) estimation is a practically useful task for eco-hydrologists, agriculturists, and stakeholders in environment health monitoring to generate comprehensive understanding of hydro-physical and soil dynamic system. This paper demonstrates the capability of a hybridised long short-term memory (LSTM) predictive framework to emulate SM under global warming scenarios. The proposed model is developed by integrating Boruta-random forest (BRF) feature selection and capturing significant antecedent memory of SM behaviour were applied to estimate the future SM using Coupled Model Intercomparison Phase-5 (CMIP5) repository. The BRF is adapted to extract pertinent features in hydro-meteorological variables intrinsically related to SM, and therefore, is used to construct a hybridised deep learning (i.e., BRF-LSTM) model. To establish the viability of deep learning model for SM estimation until 2100, five stations closely matched to the global climate model grid are selected in Australia's Murray Darling Basin. The performance skill of BRF-LSTM model is compared against standalone models (i.e., LSTM, SVR, and MARS). The results showed that the hybrid deep learning model (i.e., BRF-LSTM) with a feature selection capability could significantly outperform the standalone models for both warming simulations. The proposed hybrid model also demonstrated superiority in SM estimation with over 95% of all predictive errors lying below 0.02 mm, and low relative root means square error (≈ 1.06% for RCP4.5 and ≈ 1.888% for RCP8.5) to outperform all the benchmark models. This study demonstrates the capability of LSTM algorithm coupled with BRF feature selection to simulate future soil moisture under climate change, and so, can be successfully implemented in hydrology, agriculture, soil use management and environmental management. |
doi_str_mv | 10.1007/s00477-021-01969-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560486720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560486720</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-75bab2457b4a240db2facae4775138afa6caa541b3ea9142a94a16b3735eec903</originalsourceid><addsrcrecordid>eNp9UMtOwzAQjBBIVKU_wMkS5xQ_k_oIFS-pCATlbG0SJxglcbEdVRz5cxyC4MZpR-uZWc8kySnBS4Jxfu4x5nmeYkpSTGQmU3aQzAhnWcqokIe_mOPjZOG9KaJIMCkJniWfm-ftPTJ90I2DoCu0N-EVXVo3BEgd9JXtUG2d9gHZXTCd8dqNC-StaVFnjQ-D0yi-mw6CsT0a-ipSntaPfClQNBjhKsKmtQW0aA-uM32DfKl7cMb6k-Sohtbrxc-cJy_XV9v1bbp5uLlbX2zSkhEZ0lwUUFAu8oJDTFIVtIYSdAwuCFtBDVkJIDgpmAZJOAXJgWQFy5nQupSYzZOzyXfn7PsQP6ze7OD6eFJRkWG-ynI6sujEKp313ula7VxM5j4UwWpsW01tq9i2-m5bsShik8hHct9o92f9j-oLEwGDPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560486720</pqid></control><display><type>article</type><title>LSTM integrated with Boruta-random forest optimiser for soil moisture estimation under RCP4.5 and RCP8.5 global warming scenarios</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ahmed, A. A. Masrur ; Deo, Ravinesh C. ; Ghahramani, Afshin ; Raj, Nawin ; Feng, Qi ; Yin, Zhenliang ; Yang, Linshan</creator><creatorcontrib>Ahmed, A. A. Masrur ; Deo, Ravinesh C. ; Ghahramani, Afshin ; Raj, Nawin ; Feng, Qi ; Yin, Zhenliang ; Yang, Linshan</creatorcontrib><description>Future soil moisture (SM) estimation is a practically useful task for eco-hydrologists, agriculturists, and stakeholders in environment health monitoring to generate comprehensive understanding of hydro-physical and soil dynamic system. This paper demonstrates the capability of a hybridised long short-term memory (LSTM) predictive framework to emulate SM under global warming scenarios. The proposed model is developed by integrating Boruta-random forest (BRF) feature selection and capturing significant antecedent memory of SM behaviour were applied to estimate the future SM using Coupled Model Intercomparison Phase-5 (CMIP5) repository. The BRF is adapted to extract pertinent features in hydro-meteorological variables intrinsically related to SM, and therefore, is used to construct a hybridised deep learning (i.e., BRF-LSTM) model. To establish the viability of deep learning model for SM estimation until 2100, five stations closely matched to the global climate model grid are selected in Australia's Murray Darling Basin. The performance skill of BRF-LSTM model is compared against standalone models (i.e., LSTM, SVR, and MARS). The results showed that the hybrid deep learning model (i.e., BRF-LSTM) with a feature selection capability could significantly outperform the standalone models for both warming simulations. The proposed hybrid model also demonstrated superiority in SM estimation with over 95% of all predictive errors lying below 0.02 mm, and low relative root means square error (≈ 1.06% for RCP4.5 and ≈ 1.888% for RCP8.5) to outperform all the benchmark models. This study demonstrates the capability of LSTM algorithm coupled with BRF feature selection to simulate future soil moisture under climate change, and so, can be successfully implemented in hydrology, agriculture, soil use management and environmental management.</description><identifier>ISSN: 1436-3240</identifier><identifier>EISSN: 1436-3259</identifier><identifier>DOI: 10.1007/s00477-021-01969-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Aquatic Pollution ; Chemistry and Earth Sciences ; Climate change ; Climate models ; Computational Intelligence ; Computer Science ; Deep learning ; Earth and Environmental Science ; Earth Sciences ; Environment ; Environmental health ; Environmental management ; Feature extraction ; Feature selection ; Global climate ; Global climate models ; Global warming ; Hydrology ; Hydrometeorology ; Learning ; Long short-term memory ; Machine learning ; Math. Appl. in Environmental Science ; Original Paper ; Physics ; Probability Theory and Stochastic Processes ; Soil dynamics ; Soil moisture ; Statistics for Engineering ; Waste Water Technology ; Water Management ; Water Pollution Control</subject><ispartof>Stochastic environmental research and risk assessment, 2021-09, Vol.35 (9), p.1851-1881</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-75bab2457b4a240db2facae4775138afa6caa541b3ea9142a94a16b3735eec903</citedby><cites>FETCH-LOGICAL-c319t-75bab2457b4a240db2facae4775138afa6caa541b3ea9142a94a16b3735eec903</cites><orcidid>0000-0002-9648-4606 ; 0000-0002-7941-3902 ; 0000-0002-6862-4106 ; 0000-0002-2290-6749 ; 0000-0001-9050-6328 ; 0000-0002-8364-2644 ; 0000-0002-5469-1738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00477-021-01969-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00477-021-01969-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ahmed, A. A. Masrur</creatorcontrib><creatorcontrib>Deo, Ravinesh C.</creatorcontrib><creatorcontrib>Ghahramani, Afshin</creatorcontrib><creatorcontrib>Raj, Nawin</creatorcontrib><creatorcontrib>Feng, Qi</creatorcontrib><creatorcontrib>Yin, Zhenliang</creatorcontrib><creatorcontrib>Yang, Linshan</creatorcontrib><title>LSTM integrated with Boruta-random forest optimiser for soil moisture estimation under RCP4.5 and RCP8.5 global warming scenarios</title><title>Stochastic environmental research and risk assessment</title><addtitle>Stoch Environ Res Risk Assess</addtitle><description>Future soil moisture (SM) estimation is a practically useful task for eco-hydrologists, agriculturists, and stakeholders in environment health monitoring to generate comprehensive understanding of hydro-physical and soil dynamic system. This paper demonstrates the capability of a hybridised long short-term memory (LSTM) predictive framework to emulate SM under global warming scenarios. The proposed model is developed by integrating Boruta-random forest (BRF) feature selection and capturing significant antecedent memory of SM behaviour were applied to estimate the future SM using Coupled Model Intercomparison Phase-5 (CMIP5) repository. The BRF is adapted to extract pertinent features in hydro-meteorological variables intrinsically related to SM, and therefore, is used to construct a hybridised deep learning (i.e., BRF-LSTM) model. To establish the viability of deep learning model for SM estimation until 2100, five stations closely matched to the global climate model grid are selected in Australia's Murray Darling Basin. The performance skill of BRF-LSTM model is compared against standalone models (i.e., LSTM, SVR, and MARS). The results showed that the hybrid deep learning model (i.e., BRF-LSTM) with a feature selection capability could significantly outperform the standalone models for both warming simulations. The proposed hybrid model also demonstrated superiority in SM estimation with over 95% of all predictive errors lying below 0.02 mm, and low relative root means square error (≈ 1.06% for RCP4.5 and ≈ 1.888% for RCP8.5) to outperform all the benchmark models. This study demonstrates the capability of LSTM algorithm coupled with BRF feature selection to simulate future soil moisture under climate change, and so, can be successfully implemented in hydrology, agriculture, soil use management and environmental management.</description><subject>Algorithms</subject><subject>Aquatic Pollution</subject><subject>Chemistry and Earth Sciences</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Computational Intelligence</subject><subject>Computer Science</subject><subject>Deep learning</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Environment</subject><subject>Environmental health</subject><subject>Environmental management</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Global climate</subject><subject>Global climate models</subject><subject>Global warming</subject><subject>Hydrology</subject><subject>Hydrometeorology</subject><subject>Learning</subject><subject>Long short-term memory</subject><subject>Machine learning</subject><subject>Math. Appl. in Environmental Science</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Soil dynamics</subject><subject>Soil moisture</subject><subject>Statistics for Engineering</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><issn>1436-3240</issn><issn>1436-3259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9UMtOwzAQjBBIVKU_wMkS5xQ_k_oIFS-pCATlbG0SJxglcbEdVRz5cxyC4MZpR-uZWc8kySnBS4Jxfu4x5nmeYkpSTGQmU3aQzAhnWcqokIe_mOPjZOG9KaJIMCkJniWfm-ftPTJ90I2DoCu0N-EVXVo3BEgd9JXtUG2d9gHZXTCd8dqNC-StaVFnjQ-D0yi-mw6CsT0a-ipSntaPfClQNBjhKsKmtQW0aA-uM32DfKl7cMb6k-Sohtbrxc-cJy_XV9v1bbp5uLlbX2zSkhEZ0lwUUFAu8oJDTFIVtIYSdAwuCFtBDVkJIDgpmAZJOAXJgWQFy5nQupSYzZOzyXfn7PsQP6ze7OD6eFJRkWG-ynI6sujEKp313ula7VxM5j4UwWpsW01tq9i2-m5bsShik8hHct9o92f9j-oLEwGDPg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ahmed, A. A. Masrur</creator><creator>Deo, Ravinesh C.</creator><creator>Ghahramani, Afshin</creator><creator>Raj, Nawin</creator><creator>Feng, Qi</creator><creator>Yin, Zhenliang</creator><creator>Yang, Linshan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0W</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-9648-4606</orcidid><orcidid>https://orcid.org/0000-0002-7941-3902</orcidid><orcidid>https://orcid.org/0000-0002-6862-4106</orcidid><orcidid>https://orcid.org/0000-0002-2290-6749</orcidid><orcidid>https://orcid.org/0000-0001-9050-6328</orcidid><orcidid>https://orcid.org/0000-0002-8364-2644</orcidid><orcidid>https://orcid.org/0000-0002-5469-1738</orcidid></search><sort><creationdate>20210901</creationdate><title>LSTM integrated with Boruta-random forest optimiser for soil moisture estimation under RCP4.5 and RCP8.5 global warming scenarios</title><author>Ahmed, A. A. Masrur ; Deo, Ravinesh C. ; Ghahramani, Afshin ; Raj, Nawin ; Feng, Qi ; Yin, Zhenliang ; Yang, Linshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-75bab2457b4a240db2facae4775138afa6caa541b3ea9142a94a16b3735eec903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Aquatic Pollution</topic><topic>Chemistry and Earth Sciences</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Computational Intelligence</topic><topic>Computer Science</topic><topic>Deep learning</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Environment</topic><topic>Environmental health</topic><topic>Environmental management</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Global climate</topic><topic>Global climate models</topic><topic>Global warming</topic><topic>Hydrology</topic><topic>Hydrometeorology</topic><topic>Learning</topic><topic>Long short-term memory</topic><topic>Machine learning</topic><topic>Math. Appl. in Environmental Science</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Soil dynamics</topic><topic>Soil moisture</topic><topic>Statistics for Engineering</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, A. A. Masrur</creatorcontrib><creatorcontrib>Deo, Ravinesh C.</creatorcontrib><creatorcontrib>Ghahramani, Afshin</creatorcontrib><creatorcontrib>Raj, Nawin</creatorcontrib><creatorcontrib>Feng, Qi</creatorcontrib><creatorcontrib>Yin, Zhenliang</creatorcontrib><creatorcontrib>Yang, Linshan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Environment Abstracts</collection><jtitle>Stochastic environmental research and risk assessment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, A. A. Masrur</au><au>Deo, Ravinesh C.</au><au>Ghahramani, Afshin</au><au>Raj, Nawin</au><au>Feng, Qi</au><au>Yin, Zhenliang</au><au>Yang, Linshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LSTM integrated with Boruta-random forest optimiser for soil moisture estimation under RCP4.5 and RCP8.5 global warming scenarios</atitle><jtitle>Stochastic environmental research and risk assessment</jtitle><stitle>Stoch Environ Res Risk Assess</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>35</volume><issue>9</issue><spage>1851</spage><epage>1881</epage><pages>1851-1881</pages><issn>1436-3240</issn><eissn>1436-3259</eissn><abstract>Future soil moisture (SM) estimation is a practically useful task for eco-hydrologists, agriculturists, and stakeholders in environment health monitoring to generate comprehensive understanding of hydro-physical and soil dynamic system. This paper demonstrates the capability of a hybridised long short-term memory (LSTM) predictive framework to emulate SM under global warming scenarios. The proposed model is developed by integrating Boruta-random forest (BRF) feature selection and capturing significant antecedent memory of SM behaviour were applied to estimate the future SM using Coupled Model Intercomparison Phase-5 (CMIP5) repository. The BRF is adapted to extract pertinent features in hydro-meteorological variables intrinsically related to SM, and therefore, is used to construct a hybridised deep learning (i.e., BRF-LSTM) model. To establish the viability of deep learning model for SM estimation until 2100, five stations closely matched to the global climate model grid are selected in Australia's Murray Darling Basin. The performance skill of BRF-LSTM model is compared against standalone models (i.e., LSTM, SVR, and MARS). The results showed that the hybrid deep learning model (i.e., BRF-LSTM) with a feature selection capability could significantly outperform the standalone models for both warming simulations. The proposed hybrid model also demonstrated superiority in SM estimation with over 95% of all predictive errors lying below 0.02 mm, and low relative root means square error (≈ 1.06% for RCP4.5 and ≈ 1.888% for RCP8.5) to outperform all the benchmark models. This study demonstrates the capability of LSTM algorithm coupled with BRF feature selection to simulate future soil moisture under climate change, and so, can be successfully implemented in hydrology, agriculture, soil use management and environmental management.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00477-021-01969-3</doi><tpages>31</tpages><orcidid>https://orcid.org/0000-0002-9648-4606</orcidid><orcidid>https://orcid.org/0000-0002-7941-3902</orcidid><orcidid>https://orcid.org/0000-0002-6862-4106</orcidid><orcidid>https://orcid.org/0000-0002-2290-6749</orcidid><orcidid>https://orcid.org/0000-0001-9050-6328</orcidid><orcidid>https://orcid.org/0000-0002-8364-2644</orcidid><orcidid>https://orcid.org/0000-0002-5469-1738</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1436-3240 |
ispartof | Stochastic environmental research and risk assessment, 2021-09, Vol.35 (9), p.1851-1881 |
issn | 1436-3240 1436-3259 |
language | eng |
recordid | cdi_proquest_journals_2560486720 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Aquatic Pollution Chemistry and Earth Sciences Climate change Climate models Computational Intelligence Computer Science Deep learning Earth and Environmental Science Earth Sciences Environment Environmental health Environmental management Feature extraction Feature selection Global climate Global climate models Global warming Hydrology Hydrometeorology Learning Long short-term memory Machine learning Math. Appl. in Environmental Science Original Paper Physics Probability Theory and Stochastic Processes Soil dynamics Soil moisture Statistics for Engineering Waste Water Technology Water Management Water Pollution Control |
title | LSTM integrated with Boruta-random forest optimiser for soil moisture estimation under RCP4.5 and RCP8.5 global warming scenarios |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LSTM%20integrated%20with%20Boruta-random%20forest%20optimiser%20for%20soil%20moisture%20estimation%20under%20RCP4.5%20and%20RCP8.5%20global%20warming%20scenarios&rft.jtitle=Stochastic%20environmental%20research%20and%20risk%20assessment&rft.au=Ahmed,%20A.%20A.%20Masrur&rft.date=2021-09-01&rft.volume=35&rft.issue=9&rft.spage=1851&rft.epage=1881&rft.pages=1851-1881&rft.issn=1436-3240&rft.eissn=1436-3259&rft_id=info:doi/10.1007/s00477-021-01969-3&rft_dat=%3Cproquest_cross%3E2560486720%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560486720&rft_id=info:pmid/&rfr_iscdi=true |