Resolving sets and integer programs for recommender systems

Recommender systems make use of different sources of information for providing users with recommendations of items. Such systems are often based on either collaborative filtering methods which make automatic predictions about the interests of a user, using preferences of similar users, or content ba...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of global optimization 2021-09, Vol.81 (1), p.153-178
Hauptverfasser: Hertz, Alain, Kuflik, Tsvi, Tuval, Noa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 178
container_issue 1
container_start_page 153
container_title Journal of global optimization
container_volume 81
creator Hertz, Alain
Kuflik, Tsvi
Tuval, Noa
description Recommender systems make use of different sources of information for providing users with recommendations of items. Such systems are often based on either collaborative filtering methods which make automatic predictions about the interests of a user, using preferences of similar users, or content based filtering that matches the user’s personal preferences with item characteristics. We adopt the content-based approach and propose to use the concept of resolving set that allows to determine the preferences of the users with a very limited number of ratings. We also show how to make recommendations when user ratings are imprecise or inconsistent, and we indicate how to take into account situations where users possibly don’t care about the attribute values of some items. All recommendations are obtained in a few seconds by solving integer programs.
doi_str_mv 10.1007/s10898-020-00982-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2560481047</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718397592</galeid><sourcerecordid>A718397592</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-b8e93b8d8ac48d14468e5d2126a2fae2af029e7aff777300ac898a89705c94f13</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWD_-gKcFz6mT7GaT4KkUv6AgiJ5DujtZtnSTmmyF_ntTV_AmOQQy75OZeQi5YTBnAPIuMVBaUeBAAbTiFE7IjAlZUq5ZfUpmoLmgAoCdk4uUNnBMCT4j92-Ywvar912RcEyF9W3R-xE7jMUuhi7aIRUuxCJiE4YBfZsL6ZBGHNIVOXN2m_D6974kH48P78tnunp9elkuVrQpQY90rVCXa9Uq21SqZVVVKxQtZ7y23Fnk1gHXKK1zUsoSwDZ5Fau0BNHoyrHyktxO_-aBPveYRrMJ--hzS8NFDZViUMmcmk-pzm7R9N6FMdomnxaHvgkeXZ_fF5KpUkuheQb4BDQxpBTRmV3sBxsPhoE5WjWTVZOtmh-rBjJUTlDKYZ8t_c3yD_UNb_N5nw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560481047</pqid></control><display><type>article</type><title>Resolving sets and integer programs for recommender systems</title><source>SpringerLink Journals</source><creator>Hertz, Alain ; Kuflik, Tsvi ; Tuval, Noa</creator><creatorcontrib>Hertz, Alain ; Kuflik, Tsvi ; Tuval, Noa</creatorcontrib><description>Recommender systems make use of different sources of information for providing users with recommendations of items. Such systems are often based on either collaborative filtering methods which make automatic predictions about the interests of a user, using preferences of similar users, or content based filtering that matches the user’s personal preferences with item characteristics. We adopt the content-based approach and propose to use the concept of resolving set that allows to determine the preferences of the users with a very limited number of ratings. We also show how to make recommendations when user ratings are imprecise or inconsistent, and we indicate how to take into account situations where users possibly don’t care about the attribute values of some items. All recommendations are obtained in a few seconds by solving integer programs.</description><identifier>ISSN: 0925-5001</identifier><identifier>EISSN: 1573-2916</identifier><identifier>DOI: 10.1007/s10898-020-00982-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Computer Science ; Filtration ; Integers ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Ratings ; Real Functions ; Recommender systems</subject><ispartof>Journal of global optimization, 2021-09, Vol.81 (1), p.153-178</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c309t-b8e93b8d8ac48d14468e5d2126a2fae2af029e7aff777300ac898a89705c94f13</cites><orcidid>0000-0001-7253-3867</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10898-020-00982-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10898-020-00982-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Hertz, Alain</creatorcontrib><creatorcontrib>Kuflik, Tsvi</creatorcontrib><creatorcontrib>Tuval, Noa</creatorcontrib><title>Resolving sets and integer programs for recommender systems</title><title>Journal of global optimization</title><addtitle>J Glob Optim</addtitle><description>Recommender systems make use of different sources of information for providing users with recommendations of items. Such systems are often based on either collaborative filtering methods which make automatic predictions about the interests of a user, using preferences of similar users, or content based filtering that matches the user’s personal preferences with item characteristics. We adopt the content-based approach and propose to use the concept of resolving set that allows to determine the preferences of the users with a very limited number of ratings. We also show how to make recommendations when user ratings are imprecise or inconsistent, and we indicate how to take into account situations where users possibly don’t care about the attribute values of some items. All recommendations are obtained in a few seconds by solving integer programs.</description><subject>Computer Science</subject><subject>Filtration</subject><subject>Integers</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Ratings</subject><subject>Real Functions</subject><subject>Recommender systems</subject><issn>0925-5001</issn><issn>1573-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE1LAzEQhoMoWD_-gKcFz6mT7GaT4KkUv6AgiJ5DujtZtnSTmmyF_ntTV_AmOQQy75OZeQi5YTBnAPIuMVBaUeBAAbTiFE7IjAlZUq5ZfUpmoLmgAoCdk4uUNnBMCT4j92-Ywvar912RcEyF9W3R-xE7jMUuhi7aIRUuxCJiE4YBfZsL6ZBGHNIVOXN2m_D6974kH48P78tnunp9elkuVrQpQY90rVCXa9Uq21SqZVVVKxQtZ7y23Fnk1gHXKK1zUsoSwDZ5Fau0BNHoyrHyktxO_-aBPveYRrMJ--hzS8NFDZViUMmcmk-pzm7R9N6FMdomnxaHvgkeXZ_fF5KpUkuheQb4BDQxpBTRmV3sBxsPhoE5WjWTVZOtmh-rBjJUTlDKYZ8t_c3yD_UNb_N5nw</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Hertz, Alain</creator><creator>Kuflik, Tsvi</creator><creator>Tuval, Noa</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-7253-3867</orcidid></search><sort><creationdate>20210901</creationdate><title>Resolving sets and integer programs for recommender systems</title><author>Hertz, Alain ; Kuflik, Tsvi ; Tuval, Noa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-b8e93b8d8ac48d14468e5d2126a2fae2af029e7aff777300ac898a89705c94f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer Science</topic><topic>Filtration</topic><topic>Integers</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Ratings</topic><topic>Real Functions</topic><topic>Recommender systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hertz, Alain</creatorcontrib><creatorcontrib>Kuflik, Tsvi</creatorcontrib><creatorcontrib>Tuval, Noa</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of global optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hertz, Alain</au><au>Kuflik, Tsvi</au><au>Tuval, Noa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resolving sets and integer programs for recommender systems</atitle><jtitle>Journal of global optimization</jtitle><stitle>J Glob Optim</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>81</volume><issue>1</issue><spage>153</spage><epage>178</epage><pages>153-178</pages><issn>0925-5001</issn><eissn>1573-2916</eissn><abstract>Recommender systems make use of different sources of information for providing users with recommendations of items. Such systems are often based on either collaborative filtering methods which make automatic predictions about the interests of a user, using preferences of similar users, or content based filtering that matches the user’s personal preferences with item characteristics. We adopt the content-based approach and propose to use the concept of resolving set that allows to determine the preferences of the users with a very limited number of ratings. We also show how to make recommendations when user ratings are imprecise or inconsistent, and we indicate how to take into account situations where users possibly don’t care about the attribute values of some items. All recommendations are obtained in a few seconds by solving integer programs.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10898-020-00982-0</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-7253-3867</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0925-5001
ispartof Journal of global optimization, 2021-09, Vol.81 (1), p.153-178
issn 0925-5001
1573-2916
language eng
recordid cdi_proquest_journals_2560481047
source SpringerLink Journals
subjects Computer Science
Filtration
Integers
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Ratings
Real Functions
Recommender systems
title Resolving sets and integer programs for recommender systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A34%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resolving%20sets%20and%20integer%20programs%20for%20recommender%20systems&rft.jtitle=Journal%20of%20global%20optimization&rft.au=Hertz,%20Alain&rft.date=2021-09-01&rft.volume=81&rft.issue=1&rft.spage=153&rft.epage=178&rft.pages=153-178&rft.issn=0925-5001&rft.eissn=1573-2916&rft_id=info:doi/10.1007/s10898-020-00982-0&rft_dat=%3Cgale_proqu%3EA718397592%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560481047&rft_id=info:pmid/&rft_galeid=A718397592&rfr_iscdi=true