Salt resistance of interspecific crosses of domesticated and wild rice species
Background Salt stress negatively affects rice growth and yield in many parts of the world. Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. Breeding attempts to develop salinity‐adapted rice varieties have been hampered by the quantitative nature of adaptation and limited genetic...
Gespeichert in:
Veröffentlicht in: | Journal of plant nutrition and soil science 2021-08, Vol.184 (4), p.492-507 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 507 |
---|---|
container_issue | 4 |
container_start_page | 492 |
container_title | Journal of plant nutrition and soil science |
container_volume | 184 |
creator | Wairich, Andriele Wember, Louisa Sophie Gassama, Lamin J Wu, Lin‐Bo Murugaiyan, Varunseelan Ricachenevsky, Felipe Klein Margis‐Pinheiro, Marcia Frei, Michael |
description | Background
Salt stress negatively affects rice growth and yield in many parts of the world. Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. Breeding attempts to develop salinity‐adapted rice varieties have been hampered by the quantitative nature of adaptation and limited genetic variability in cultivated rice.
Aims
We aimed to explore the potential of wild rice species for improving adaptation to salinity. We screened two populations of introgression lines (ILs) derived from crosses between O. sativa (cv. Curinga) × O. meridionalis (CM population) and between O. sativa (cv. Curinga) × O. rufipogon (CR population) to identify quantitative trait loci (QTLs) and associated resistance mechanisms to salt stress.
Methods
We used previously developed ILs and screened them for adaptation to salt stress. In addition, we performed physiological, biochemical, and mineral analysis with the most resistant ILs identified for each population.
Results
Three and 19 QTLs for different vegetation indices were identified for the CM and CR population, respectively. We identified two ILs with superior resistance to salinity. These ILs showed enhanced vegetation indexes and maintained relatively high gas exchange under salt stress. In addition, these ILs showed less damage to cell membranes and reduced formation of H2O2, when compared with the recurrent parent, O. sativa.
Conclusion
Our study demonstrated that rice wild relatives are promising sources of salinity resistance. Introgressions of O. meridionalis and O. rufipogon into the O. sativa genome can confer increased resistance to salinity excess. |
doi_str_mv | 10.1002/jpln.202100068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560201485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560201485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-71df6e86c11a756ac21bba51b7c67f691b02311f3776146237c8047391ad93</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmNw5RyJc0fstEl7RBMw0DQQcI_SNJEydW1JOqH9e7INwZGTbfl5_fEScg1sBozh7XpouxkyTAUT5QmZQIGYocD8NOU5F1kpOTsnFzGuE5JDhROyetftSIONPo66M5b2jvputCEO1njnDTWhj9HGfaPpNzaO3ujRNlR3Df3ybUODT7IDbuMlOXO6jfbqJ07J28P9x3yRLV8en-Z3y8zwQpaZhMYJWwoDoGUhtEGoa11ALY2QTlRQM-QAjkspIBfIpSlZLnkFuqn4lNwchw6h_9ymi9S634Yu7VNYCIYM8rJI1OxIHR4I1qkh-I0OOwVM7Q1Te8PUr2FJUB0F6Su7-4dWz6_L1Z_2G-kJbsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560201485</pqid></control><display><type>article</type><title>Salt resistance of interspecific crosses of domesticated and wild rice species</title><source>Wiley-Blackwell Journals</source><creator>Wairich, Andriele ; Wember, Louisa Sophie ; Gassama, Lamin J ; Wu, Lin‐Bo ; Murugaiyan, Varunseelan ; Ricachenevsky, Felipe Klein ; Margis‐Pinheiro, Marcia ; Frei, Michael</creator><creatorcontrib>Wairich, Andriele ; Wember, Louisa Sophie ; Gassama, Lamin J ; Wu, Lin‐Bo ; Murugaiyan, Varunseelan ; Ricachenevsky, Felipe Klein ; Margis‐Pinheiro, Marcia ; Frei, Michael</creatorcontrib><description>Background
Salt stress negatively affects rice growth and yield in many parts of the world. Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. Breeding attempts to develop salinity‐adapted rice varieties have been hampered by the quantitative nature of adaptation and limited genetic variability in cultivated rice.
Aims
We aimed to explore the potential of wild rice species for improving adaptation to salinity. We screened two populations of introgression lines (ILs) derived from crosses between O. sativa (cv. Curinga) × O. meridionalis (CM population) and between O. sativa (cv. Curinga) × O. rufipogon (CR population) to identify quantitative trait loci (QTLs) and associated resistance mechanisms to salt stress.
Methods
We used previously developed ILs and screened them for adaptation to salt stress. In addition, we performed physiological, biochemical, and mineral analysis with the most resistant ILs identified for each population.
Results
Three and 19 QTLs for different vegetation indices were identified for the CM and CR population, respectively. We identified two ILs with superior resistance to salinity. These ILs showed enhanced vegetation indexes and maintained relatively high gas exchange under salt stress. In addition, these ILs showed less damage to cell membranes and reduced formation of H2O2, when compared with the recurrent parent, O. sativa.
Conclusion
Our study demonstrated that rice wild relatives are promising sources of salinity resistance. Introgressions of O. meridionalis and O. rufipogon into the O. sativa genome can confer increased resistance to salinity excess.</description><identifier>ISSN: 1436-8730</identifier><identifier>EISSN: 1522-2624</identifier><identifier>DOI: 10.1002/jpln.202100068</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Abiotic stress ; Adaptation ; Cell membranes ; Cultivation ; Gas exchange ; Gene mapping ; Genetic variability ; Genomes ; Grain cultivation ; Hydrogen peroxide ; Oryza meridionalis ; Oryza rufipogon ; Oryza sativa ; Plant breeding ; Population ; QTL analysis ; Quantitative trait loci ; Rice ; rice wild relative ; Salinity ; Salinity effects ; salinity resistance ; Salinity tolerance ; Salts ; Stress ; Vegetation</subject><ispartof>Journal of plant nutrition and soil science, 2021-08, Vol.184 (4), p.492-507</ispartof><rights>2021 The Authors. published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-71df6e86c11a756ac21bba51b7c67f691b02311f3776146237c8047391ad93</citedby><cites>FETCH-LOGICAL-c3578-71df6e86c11a756ac21bba51b7c67f691b02311f3776146237c8047391ad93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjpln.202100068$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjpln.202100068$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Wairich, Andriele</creatorcontrib><creatorcontrib>Wember, Louisa Sophie</creatorcontrib><creatorcontrib>Gassama, Lamin J</creatorcontrib><creatorcontrib>Wu, Lin‐Bo</creatorcontrib><creatorcontrib>Murugaiyan, Varunseelan</creatorcontrib><creatorcontrib>Ricachenevsky, Felipe Klein</creatorcontrib><creatorcontrib>Margis‐Pinheiro, Marcia</creatorcontrib><creatorcontrib>Frei, Michael</creatorcontrib><title>Salt resistance of interspecific crosses of domesticated and wild rice species</title><title>Journal of plant nutrition and soil science</title><description>Background
Salt stress negatively affects rice growth and yield in many parts of the world. Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. Breeding attempts to develop salinity‐adapted rice varieties have been hampered by the quantitative nature of adaptation and limited genetic variability in cultivated rice.
Aims
We aimed to explore the potential of wild rice species for improving adaptation to salinity. We screened two populations of introgression lines (ILs) derived from crosses between O. sativa (cv. Curinga) × O. meridionalis (CM population) and between O. sativa (cv. Curinga) × O. rufipogon (CR population) to identify quantitative trait loci (QTLs) and associated resistance mechanisms to salt stress.
Methods
We used previously developed ILs and screened them for adaptation to salt stress. In addition, we performed physiological, biochemical, and mineral analysis with the most resistant ILs identified for each population.
Results
Three and 19 QTLs for different vegetation indices were identified for the CM and CR population, respectively. We identified two ILs with superior resistance to salinity. These ILs showed enhanced vegetation indexes and maintained relatively high gas exchange under salt stress. In addition, these ILs showed less damage to cell membranes and reduced formation of H2O2, when compared with the recurrent parent, O. sativa.
Conclusion
Our study demonstrated that rice wild relatives are promising sources of salinity resistance. Introgressions of O. meridionalis and O. rufipogon into the O. sativa genome can confer increased resistance to salinity excess.</description><subject>Abiotic stress</subject><subject>Adaptation</subject><subject>Cell membranes</subject><subject>Cultivation</subject><subject>Gas exchange</subject><subject>Gene mapping</subject><subject>Genetic variability</subject><subject>Genomes</subject><subject>Grain cultivation</subject><subject>Hydrogen peroxide</subject><subject>Oryza meridionalis</subject><subject>Oryza rufipogon</subject><subject>Oryza sativa</subject><subject>Plant breeding</subject><subject>Population</subject><subject>QTL analysis</subject><subject>Quantitative trait loci</subject><subject>Rice</subject><subject>rice wild relative</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>salinity resistance</subject><subject>Salinity tolerance</subject><subject>Salts</subject><subject>Stress</subject><subject>Vegetation</subject><issn>1436-8730</issn><issn>1522-2624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE1PwzAMhiMEEmNw5RyJc0fstEl7RBMw0DQQcI_SNJEydW1JOqH9e7INwZGTbfl5_fEScg1sBozh7XpouxkyTAUT5QmZQIGYocD8NOU5F1kpOTsnFzGuE5JDhROyetftSIONPo66M5b2jvputCEO1njnDTWhj9HGfaPpNzaO3ujRNlR3Df3ybUODT7IDbuMlOXO6jfbqJ07J28P9x3yRLV8en-Z3y8zwQpaZhMYJWwoDoGUhtEGoa11ALY2QTlRQM-QAjkspIBfIpSlZLnkFuqn4lNwchw6h_9ymi9S634Yu7VNYCIYM8rJI1OxIHR4I1qkh-I0OOwVM7Q1Te8PUr2FJUB0F6Su7-4dWz6_L1Z_2G-kJbsY</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Wairich, Andriele</creator><creator>Wember, Louisa Sophie</creator><creator>Gassama, Lamin J</creator><creator>Wu, Lin‐Bo</creator><creator>Murugaiyan, Varunseelan</creator><creator>Ricachenevsky, Felipe Klein</creator><creator>Margis‐Pinheiro, Marcia</creator><creator>Frei, Michael</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>202108</creationdate><title>Salt resistance of interspecific crosses of domesticated and wild rice species</title><author>Wairich, Andriele ; Wember, Louisa Sophie ; Gassama, Lamin J ; Wu, Lin‐Bo ; Murugaiyan, Varunseelan ; Ricachenevsky, Felipe Klein ; Margis‐Pinheiro, Marcia ; Frei, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-71df6e86c11a756ac21bba51b7c67f691b02311f3776146237c8047391ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abiotic stress</topic><topic>Adaptation</topic><topic>Cell membranes</topic><topic>Cultivation</topic><topic>Gas exchange</topic><topic>Gene mapping</topic><topic>Genetic variability</topic><topic>Genomes</topic><topic>Grain cultivation</topic><topic>Hydrogen peroxide</topic><topic>Oryza meridionalis</topic><topic>Oryza rufipogon</topic><topic>Oryza sativa</topic><topic>Plant breeding</topic><topic>Population</topic><topic>QTL analysis</topic><topic>Quantitative trait loci</topic><topic>Rice</topic><topic>rice wild relative</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>salinity resistance</topic><topic>Salinity tolerance</topic><topic>Salts</topic><topic>Stress</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wairich, Andriele</creatorcontrib><creatorcontrib>Wember, Louisa Sophie</creatorcontrib><creatorcontrib>Gassama, Lamin J</creatorcontrib><creatorcontrib>Wu, Lin‐Bo</creatorcontrib><creatorcontrib>Murugaiyan, Varunseelan</creatorcontrib><creatorcontrib>Ricachenevsky, Felipe Klein</creatorcontrib><creatorcontrib>Margis‐Pinheiro, Marcia</creatorcontrib><creatorcontrib>Frei, Michael</creatorcontrib><collection>Wiley Open Access Journals</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of plant nutrition and soil science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wairich, Andriele</au><au>Wember, Louisa Sophie</au><au>Gassama, Lamin J</au><au>Wu, Lin‐Bo</au><au>Murugaiyan, Varunseelan</au><au>Ricachenevsky, Felipe Klein</au><au>Margis‐Pinheiro, Marcia</au><au>Frei, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salt resistance of interspecific crosses of domesticated and wild rice species</atitle><jtitle>Journal of plant nutrition and soil science</jtitle><date>2021-08</date><risdate>2021</risdate><volume>184</volume><issue>4</issue><spage>492</spage><epage>507</epage><pages>492-507</pages><issn>1436-8730</issn><eissn>1522-2624</eissn><abstract>Background
Salt stress negatively affects rice growth and yield in many parts of the world. Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. Breeding attempts to develop salinity‐adapted rice varieties have been hampered by the quantitative nature of adaptation and limited genetic variability in cultivated rice.
Aims
We aimed to explore the potential of wild rice species for improving adaptation to salinity. We screened two populations of introgression lines (ILs) derived from crosses between O. sativa (cv. Curinga) × O. meridionalis (CM population) and between O. sativa (cv. Curinga) × O. rufipogon (CR population) to identify quantitative trait loci (QTLs) and associated resistance mechanisms to salt stress.
Methods
We used previously developed ILs and screened them for adaptation to salt stress. In addition, we performed physiological, biochemical, and mineral analysis with the most resistant ILs identified for each population.
Results
Three and 19 QTLs for different vegetation indices were identified for the CM and CR population, respectively. We identified two ILs with superior resistance to salinity. These ILs showed enhanced vegetation indexes and maintained relatively high gas exchange under salt stress. In addition, these ILs showed less damage to cell membranes and reduced formation of H2O2, when compared with the recurrent parent, O. sativa.
Conclusion
Our study demonstrated that rice wild relatives are promising sources of salinity resistance. Introgressions of O. meridionalis and O. rufipogon into the O. sativa genome can confer increased resistance to salinity excess.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jpln.202100068</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1436-8730 |
ispartof | Journal of plant nutrition and soil science, 2021-08, Vol.184 (4), p.492-507 |
issn | 1436-8730 1522-2624 |
language | eng |
recordid | cdi_proquest_journals_2560201485 |
source | Wiley-Blackwell Journals |
subjects | Abiotic stress Adaptation Cell membranes Cultivation Gas exchange Gene mapping Genetic variability Genomes Grain cultivation Hydrogen peroxide Oryza meridionalis Oryza rufipogon Oryza sativa Plant breeding Population QTL analysis Quantitative trait loci Rice rice wild relative Salinity Salinity effects salinity resistance Salinity tolerance Salts Stress Vegetation |
title | Salt resistance of interspecific crosses of domesticated and wild rice species |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salt%20resistance%20of%20interspecific%20crosses%20of%20domesticated%20and%20wild%20rice%20species&rft.jtitle=Journal%20of%20plant%20nutrition%20and%20soil%20science&rft.au=Wairich,%20Andriele&rft.date=2021-08&rft.volume=184&rft.issue=4&rft.spage=492&rft.epage=507&rft.pages=492-507&rft.issn=1436-8730&rft.eissn=1522-2624&rft_id=info:doi/10.1002/jpln.202100068&rft_dat=%3Cproquest_cross%3E2560201485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560201485&rft_id=info:pmid/&rfr_iscdi=true |