Salt resistance of interspecific crosses of domesticated and wild rice species

Background Salt stress negatively affects rice growth and yield in many parts of the world. Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. Breeding attempts to develop salinity‐adapted rice varieties have been hampered by the quantitative nature of adaptation and limited genetic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant nutrition and soil science 2021-08, Vol.184 (4), p.492-507
Hauptverfasser: Wairich, Andriele, Wember, Louisa Sophie, Gassama, Lamin J, Wu, Lin‐Bo, Murugaiyan, Varunseelan, Ricachenevsky, Felipe Klein, Margis‐Pinheiro, Marcia, Frei, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 507
container_issue 4
container_start_page 492
container_title Journal of plant nutrition and soil science
container_volume 184
creator Wairich, Andriele
Wember, Louisa Sophie
Gassama, Lamin J
Wu, Lin‐Bo
Murugaiyan, Varunseelan
Ricachenevsky, Felipe Klein
Margis‐Pinheiro, Marcia
Frei, Michael
description Background Salt stress negatively affects rice growth and yield in many parts of the world. Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. Breeding attempts to develop salinity‐adapted rice varieties have been hampered by the quantitative nature of adaptation and limited genetic variability in cultivated rice. Aims We aimed to explore the potential of wild rice species for improving adaptation to salinity. We screened two populations of introgression lines (ILs) derived from crosses between O. sativa (cv. Curinga) × O. meridionalis (CM population) and between O. sativa (cv. Curinga) × O. rufipogon (CR population) to identify quantitative trait loci (QTLs) and associated resistance mechanisms to salt stress. Methods We used previously developed ILs and screened them for adaptation to salt stress. In addition, we performed physiological, biochemical, and mineral analysis with the most resistant ILs identified for each population. Results Three and 19 QTLs for different vegetation indices were identified for the CM and CR population, respectively. We identified two ILs with superior resistance to salinity. These ILs showed enhanced vegetation indexes and maintained relatively high gas exchange under salt stress. In addition, these ILs showed less damage to cell membranes and reduced formation of H2O2, when compared with the recurrent parent, O. sativa. Conclusion Our study demonstrated that rice wild relatives are promising sources of salinity resistance. Introgressions of O. meridionalis and O. rufipogon into the O. sativa genome can confer increased resistance to salinity excess.
doi_str_mv 10.1002/jpln.202100068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560201485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560201485</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3578-71df6e86c11a756ac21bba51b7c67f691b02311f3776146237c8047391ad93</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEmNw5RyJc0fstEl7RBMw0DQQcI_SNJEydW1JOqH9e7INwZGTbfl5_fEScg1sBozh7XpouxkyTAUT5QmZQIGYocD8NOU5F1kpOTsnFzGuE5JDhROyetftSIONPo66M5b2jvputCEO1njnDTWhj9HGfaPpNzaO3ujRNlR3Df3ybUODT7IDbuMlOXO6jfbqJ07J28P9x3yRLV8en-Z3y8zwQpaZhMYJWwoDoGUhtEGoa11ALY2QTlRQM-QAjkspIBfIpSlZLnkFuqn4lNwchw6h_9ymi9S634Yu7VNYCIYM8rJI1OxIHR4I1qkh-I0OOwVM7Q1Te8PUr2FJUB0F6Su7-4dWz6_L1Z_2G-kJbsY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560201485</pqid></control><display><type>article</type><title>Salt resistance of interspecific crosses of domesticated and wild rice species</title><source>Wiley-Blackwell Journals</source><creator>Wairich, Andriele ; Wember, Louisa Sophie ; Gassama, Lamin J ; Wu, Lin‐Bo ; Murugaiyan, Varunseelan ; Ricachenevsky, Felipe Klein ; Margis‐Pinheiro, Marcia ; Frei, Michael</creator><creatorcontrib>Wairich, Andriele ; Wember, Louisa Sophie ; Gassama, Lamin J ; Wu, Lin‐Bo ; Murugaiyan, Varunseelan ; Ricachenevsky, Felipe Klein ; Margis‐Pinheiro, Marcia ; Frei, Michael</creatorcontrib><description>Background Salt stress negatively affects rice growth and yield in many parts of the world. Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. Breeding attempts to develop salinity‐adapted rice varieties have been hampered by the quantitative nature of adaptation and limited genetic variability in cultivated rice. Aims We aimed to explore the potential of wild rice species for improving adaptation to salinity. We screened two populations of introgression lines (ILs) derived from crosses between O. sativa (cv. Curinga) × O. meridionalis (CM population) and between O. sativa (cv. Curinga) × O. rufipogon (CR population) to identify quantitative trait loci (QTLs) and associated resistance mechanisms to salt stress. Methods We used previously developed ILs and screened them for adaptation to salt stress. In addition, we performed physiological, biochemical, and mineral analysis with the most resistant ILs identified for each population. Results Three and 19 QTLs for different vegetation indices were identified for the CM and CR population, respectively. We identified two ILs with superior resistance to salinity. These ILs showed enhanced vegetation indexes and maintained relatively high gas exchange under salt stress. In addition, these ILs showed less damage to cell membranes and reduced formation of H2O2, when compared with the recurrent parent, O. sativa. Conclusion Our study demonstrated that rice wild relatives are promising sources of salinity resistance. Introgressions of O. meridionalis and O. rufipogon into the O. sativa genome can confer increased resistance to salinity excess.</description><identifier>ISSN: 1436-8730</identifier><identifier>EISSN: 1522-2624</identifier><identifier>DOI: 10.1002/jpln.202100068</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Abiotic stress ; Adaptation ; Cell membranes ; Cultivation ; Gas exchange ; Gene mapping ; Genetic variability ; Genomes ; Grain cultivation ; Hydrogen peroxide ; Oryza meridionalis ; Oryza rufipogon ; Oryza sativa ; Plant breeding ; Population ; QTL analysis ; Quantitative trait loci ; Rice ; rice wild relative ; Salinity ; Salinity effects ; salinity resistance ; Salinity tolerance ; Salts ; Stress ; Vegetation</subject><ispartof>Journal of plant nutrition and soil science, 2021-08, Vol.184 (4), p.492-507</ispartof><rights>2021 The Authors. published by Wiley‐VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3578-71df6e86c11a756ac21bba51b7c67f691b02311f3776146237c8047391ad93</citedby><cites>FETCH-LOGICAL-c3578-71df6e86c11a756ac21bba51b7c67f691b02311f3776146237c8047391ad93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjpln.202100068$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjpln.202100068$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Wairich, Andriele</creatorcontrib><creatorcontrib>Wember, Louisa Sophie</creatorcontrib><creatorcontrib>Gassama, Lamin J</creatorcontrib><creatorcontrib>Wu, Lin‐Bo</creatorcontrib><creatorcontrib>Murugaiyan, Varunseelan</creatorcontrib><creatorcontrib>Ricachenevsky, Felipe Klein</creatorcontrib><creatorcontrib>Margis‐Pinheiro, Marcia</creatorcontrib><creatorcontrib>Frei, Michael</creatorcontrib><title>Salt resistance of interspecific crosses of domesticated and wild rice species</title><title>Journal of plant nutrition and soil science</title><description>Background Salt stress negatively affects rice growth and yield in many parts of the world. Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. Breeding attempts to develop salinity‐adapted rice varieties have been hampered by the quantitative nature of adaptation and limited genetic variability in cultivated rice. Aims We aimed to explore the potential of wild rice species for improving adaptation to salinity. We screened two populations of introgression lines (ILs) derived from crosses between O. sativa (cv. Curinga) × O. meridionalis (CM population) and between O. sativa (cv. Curinga) × O. rufipogon (CR population) to identify quantitative trait loci (QTLs) and associated resistance mechanisms to salt stress. Methods We used previously developed ILs and screened them for adaptation to salt stress. In addition, we performed physiological, biochemical, and mineral analysis with the most resistant ILs identified for each population. Results Three and 19 QTLs for different vegetation indices were identified for the CM and CR population, respectively. We identified two ILs with superior resistance to salinity. These ILs showed enhanced vegetation indexes and maintained relatively high gas exchange under salt stress. In addition, these ILs showed less damage to cell membranes and reduced formation of H2O2, when compared with the recurrent parent, O. sativa. Conclusion Our study demonstrated that rice wild relatives are promising sources of salinity resistance. Introgressions of O. meridionalis and O. rufipogon into the O. sativa genome can confer increased resistance to salinity excess.</description><subject>Abiotic stress</subject><subject>Adaptation</subject><subject>Cell membranes</subject><subject>Cultivation</subject><subject>Gas exchange</subject><subject>Gene mapping</subject><subject>Genetic variability</subject><subject>Genomes</subject><subject>Grain cultivation</subject><subject>Hydrogen peroxide</subject><subject>Oryza meridionalis</subject><subject>Oryza rufipogon</subject><subject>Oryza sativa</subject><subject>Plant breeding</subject><subject>Population</subject><subject>QTL analysis</subject><subject>Quantitative trait loci</subject><subject>Rice</subject><subject>rice wild relative</subject><subject>Salinity</subject><subject>Salinity effects</subject><subject>salinity resistance</subject><subject>Salinity tolerance</subject><subject>Salts</subject><subject>Stress</subject><subject>Vegetation</subject><issn>1436-8730</issn><issn>1522-2624</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkE1PwzAMhiMEEmNw5RyJc0fstEl7RBMw0DQQcI_SNJEydW1JOqH9e7INwZGTbfl5_fEScg1sBozh7XpouxkyTAUT5QmZQIGYocD8NOU5F1kpOTsnFzGuE5JDhROyetftSIONPo66M5b2jvputCEO1njnDTWhj9HGfaPpNzaO3ujRNlR3Df3ybUODT7IDbuMlOXO6jfbqJ07J28P9x3yRLV8en-Z3y8zwQpaZhMYJWwoDoGUhtEGoa11ALY2QTlRQM-QAjkspIBfIpSlZLnkFuqn4lNwchw6h_9ymi9S634Yu7VNYCIYM8rJI1OxIHR4I1qkh-I0OOwVM7Q1Te8PUr2FJUB0F6Su7-4dWz6_L1Z_2G-kJbsY</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Wairich, Andriele</creator><creator>Wember, Louisa Sophie</creator><creator>Gassama, Lamin J</creator><creator>Wu, Lin‐Bo</creator><creator>Murugaiyan, Varunseelan</creator><creator>Ricachenevsky, Felipe Klein</creator><creator>Margis‐Pinheiro, Marcia</creator><creator>Frei, Michael</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>202108</creationdate><title>Salt resistance of interspecific crosses of domesticated and wild rice species</title><author>Wairich, Andriele ; Wember, Louisa Sophie ; Gassama, Lamin J ; Wu, Lin‐Bo ; Murugaiyan, Varunseelan ; Ricachenevsky, Felipe Klein ; Margis‐Pinheiro, Marcia ; Frei, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3578-71df6e86c11a756ac21bba51b7c67f691b02311f3776146237c8047391ad93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Abiotic stress</topic><topic>Adaptation</topic><topic>Cell membranes</topic><topic>Cultivation</topic><topic>Gas exchange</topic><topic>Gene mapping</topic><topic>Genetic variability</topic><topic>Genomes</topic><topic>Grain cultivation</topic><topic>Hydrogen peroxide</topic><topic>Oryza meridionalis</topic><topic>Oryza rufipogon</topic><topic>Oryza sativa</topic><topic>Plant breeding</topic><topic>Population</topic><topic>QTL analysis</topic><topic>Quantitative trait loci</topic><topic>Rice</topic><topic>rice wild relative</topic><topic>Salinity</topic><topic>Salinity effects</topic><topic>salinity resistance</topic><topic>Salinity tolerance</topic><topic>Salts</topic><topic>Stress</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wairich, Andriele</creatorcontrib><creatorcontrib>Wember, Louisa Sophie</creatorcontrib><creatorcontrib>Gassama, Lamin J</creatorcontrib><creatorcontrib>Wu, Lin‐Bo</creatorcontrib><creatorcontrib>Murugaiyan, Varunseelan</creatorcontrib><creatorcontrib>Ricachenevsky, Felipe Klein</creatorcontrib><creatorcontrib>Margis‐Pinheiro, Marcia</creatorcontrib><creatorcontrib>Frei, Michael</creatorcontrib><collection>Wiley Open Access Journals</collection><collection>Wiley-Blackwell Backfiles (Open access)</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of plant nutrition and soil science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wairich, Andriele</au><au>Wember, Louisa Sophie</au><au>Gassama, Lamin J</au><au>Wu, Lin‐Bo</au><au>Murugaiyan, Varunseelan</au><au>Ricachenevsky, Felipe Klein</au><au>Margis‐Pinheiro, Marcia</au><au>Frei, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Salt resistance of interspecific crosses of domesticated and wild rice species</atitle><jtitle>Journal of plant nutrition and soil science</jtitle><date>2021-08</date><risdate>2021</risdate><volume>184</volume><issue>4</issue><spage>492</spage><epage>507</epage><pages>492-507</pages><issn>1436-8730</issn><eissn>1522-2624</eissn><abstract>Background Salt stress negatively affects rice growth and yield in many parts of the world. Cultivated rice (Oryza sativa L.) is very sensitive to salt stress. Breeding attempts to develop salinity‐adapted rice varieties have been hampered by the quantitative nature of adaptation and limited genetic variability in cultivated rice. Aims We aimed to explore the potential of wild rice species for improving adaptation to salinity. We screened two populations of introgression lines (ILs) derived from crosses between O. sativa (cv. Curinga) × O. meridionalis (CM population) and between O. sativa (cv. Curinga) × O. rufipogon (CR population) to identify quantitative trait loci (QTLs) and associated resistance mechanisms to salt stress. Methods We used previously developed ILs and screened them for adaptation to salt stress. In addition, we performed physiological, biochemical, and mineral analysis with the most resistant ILs identified for each population. Results Three and 19 QTLs for different vegetation indices were identified for the CM and CR population, respectively. We identified two ILs with superior resistance to salinity. These ILs showed enhanced vegetation indexes and maintained relatively high gas exchange under salt stress. In addition, these ILs showed less damage to cell membranes and reduced formation of H2O2, when compared with the recurrent parent, O. sativa. Conclusion Our study demonstrated that rice wild relatives are promising sources of salinity resistance. Introgressions of O. meridionalis and O. rufipogon into the O. sativa genome can confer increased resistance to salinity excess.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jpln.202100068</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1436-8730
ispartof Journal of plant nutrition and soil science, 2021-08, Vol.184 (4), p.492-507
issn 1436-8730
1522-2624
language eng
recordid cdi_proquest_journals_2560201485
source Wiley-Blackwell Journals
subjects Abiotic stress
Adaptation
Cell membranes
Cultivation
Gas exchange
Gene mapping
Genetic variability
Genomes
Grain cultivation
Hydrogen peroxide
Oryza meridionalis
Oryza rufipogon
Oryza sativa
Plant breeding
Population
QTL analysis
Quantitative trait loci
Rice
rice wild relative
Salinity
Salinity effects
salinity resistance
Salinity tolerance
Salts
Stress
Vegetation
title Salt resistance of interspecific crosses of domesticated and wild rice species
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T16%3A18%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Salt%20resistance%20of%20interspecific%20crosses%20of%20domesticated%20and%20wild%20rice%20species&rft.jtitle=Journal%20of%20plant%20nutrition%20and%20soil%20science&rft.au=Wairich,%20Andriele&rft.date=2021-08&rft.volume=184&rft.issue=4&rft.spage=492&rft.epage=507&rft.pages=492-507&rft.issn=1436-8730&rft.eissn=1522-2624&rft_id=info:doi/10.1002/jpln.202100068&rft_dat=%3Cproquest_cross%3E2560201485%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560201485&rft_id=info:pmid/&rfr_iscdi=true