The multi-fuzzy N-soft set and its applications to decision-making

The goal of this paper is to introduce a novel hybrid model called multi-fuzzy N -soft set, and to design an adjustable decision-making methodology for solving problems where the inputs appear in this form. The new model enhances the virtues of multi-fuzzy set theory with the benefits of N -soft set...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2021-09, Vol.33 (17), p.11437-11446
Hauptverfasser: Fatimah, Fatia, Alcantud, José Carlos R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11446
container_issue 17
container_start_page 11437
container_title Neural computing & applications
container_volume 33
creator Fatimah, Fatia
Alcantud, José Carlos R.
description The goal of this paper is to introduce a novel hybrid model called multi-fuzzy N -soft set, and to design an adjustable decision-making methodology for solving problems where the inputs appear in this form. The new model enhances the virtues of multi-fuzzy set theory with the benefits of N -soft sets, two models that have been extensively investigated in recent years. The theoretical setting that arises allows us to incorporate data on the occurrence of ratings or grades (the defining characteristic of N -soft sets) in a multi-fuzzy environment. We perform a set-theoretical analysis of multi-fuzzy N -soft sets in order to establish the fundamental properties of their behavior. Then we develop a highly adaptable approach to decision-making in this new setting. This methodology takes advantage of a flexible procedure for the conversion of the original data to a hesitant N -soft setting, where we can resort to scores. Examples illustrate its application and the role of each parameter in the decision-making procedure.
doi_str_mv 10.1007/s00521-020-05647-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560164232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560164232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b7da929d84dec79ada9985c3fe36d7a0d509684b9994af3e71a4ae827d448bde3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMn4mXUPGSKtiUteXETklpk2A7i_brMQSJHavR1dwzIx2ELilcU4DiJgJIRgkwICCVKAg_QjMqOCccZHmMZqBFXivBT9FZjBsAEKqUM3S3evd4N25TS5rxcNjjFxL7JuHoE7adw22K2A7Dtq1tavsu4tRj5-s25kB29qPt1ufopLHb6C9-5xy9PdyvFk9k-fr4vLhdkppTnUhVOKuZdqXIfKFtTrqUNW88V66w4CRoVYpKay1sw31BrbC-ZIUToqyc53N0Nd0dQv85-pjMph9Dl18aJhVQJRhnucWmVh36GINvzBDanQ17Q8F8uzKTK5NdmR9XhmeIT1DM5W7tw9_pf6gv-kZsEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560164232</pqid></control><display><type>article</type><title>The multi-fuzzy N-soft set and its applications to decision-making</title><source>SpringerLink Journals</source><creator>Fatimah, Fatia ; Alcantud, José Carlos R.</creator><creatorcontrib>Fatimah, Fatia ; Alcantud, José Carlos R.</creatorcontrib><description>The goal of this paper is to introduce a novel hybrid model called multi-fuzzy N -soft set, and to design an adjustable decision-making methodology for solving problems where the inputs appear in this form. The new model enhances the virtues of multi-fuzzy set theory with the benefits of N -soft sets, two models that have been extensively investigated in recent years. The theoretical setting that arises allows us to incorporate data on the occurrence of ratings or grades (the defining characteristic of N -soft sets) in a multi-fuzzy environment. We perform a set-theoretical analysis of multi-fuzzy N -soft sets in order to establish the fundamental properties of their behavior. Then we develop a highly adaptable approach to decision-making in this new setting. This methodology takes advantage of a flexible procedure for the conversion of the original data to a hesitant N -soft setting, where we can resort to scores. Examples illustrate its application and the role of each parameter in the decision-making procedure.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-020-05647-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Decision making ; Fuzzy logic ; Fuzzy set theory ; Fuzzy sets ; Image Processing and Computer Vision ; Original Article ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing &amp; applications, 2021-09, Vol.33 (17), p.11437-11446</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b7da929d84dec79ada9985c3fe36d7a0d509684b9994af3e71a4ae827d448bde3</citedby><cites>FETCH-LOGICAL-c319t-b7da929d84dec79ada9985c3fe36d7a0d509684b9994af3e71a4ae827d448bde3</cites><orcidid>0000-0002-6883-4402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-020-05647-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-020-05647-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fatimah, Fatia</creatorcontrib><creatorcontrib>Alcantud, José Carlos R.</creatorcontrib><title>The multi-fuzzy N-soft set and its applications to decision-making</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>The goal of this paper is to introduce a novel hybrid model called multi-fuzzy N -soft set, and to design an adjustable decision-making methodology for solving problems where the inputs appear in this form. The new model enhances the virtues of multi-fuzzy set theory with the benefits of N -soft sets, two models that have been extensively investigated in recent years. The theoretical setting that arises allows us to incorporate data on the occurrence of ratings or grades (the defining characteristic of N -soft sets) in a multi-fuzzy environment. We perform a set-theoretical analysis of multi-fuzzy N -soft sets in order to establish the fundamental properties of their behavior. Then we develop a highly adaptable approach to decision-making in this new setting. This methodology takes advantage of a flexible procedure for the conversion of the original data to a hesitant N -soft setting, where we can resort to scores. Examples illustrate its application and the role of each parameter in the decision-making procedure.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Decision making</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMn4mXUPGSKtiUteXETklpk2A7i_brMQSJHavR1dwzIx2ELilcU4DiJgJIRgkwICCVKAg_QjMqOCccZHmMZqBFXivBT9FZjBsAEKqUM3S3evd4N25TS5rxcNjjFxL7JuHoE7adw22K2A7Dtq1tavsu4tRj5-s25kB29qPt1ufopLHb6C9-5xy9PdyvFk9k-fr4vLhdkppTnUhVOKuZdqXIfKFtTrqUNW88V66w4CRoVYpKay1sw31BrbC-ZIUToqyc53N0Nd0dQv85-pjMph9Dl18aJhVQJRhnucWmVh36GINvzBDanQ17Q8F8uzKTK5NdmR9XhmeIT1DM5W7tw9_pf6gv-kZsEQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Fatimah, Fatia</creator><creator>Alcantud, José Carlos R.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6883-4402</orcidid></search><sort><creationdate>20210901</creationdate><title>The multi-fuzzy N-soft set and its applications to decision-making</title><author>Fatimah, Fatia ; Alcantud, José Carlos R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b7da929d84dec79ada9985c3fe36d7a0d509684b9994af3e71a4ae827d448bde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Decision making</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatimah, Fatia</creatorcontrib><creatorcontrib>Alcantud, José Carlos R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatimah, Fatia</au><au>Alcantud, José Carlos R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The multi-fuzzy N-soft set and its applications to decision-making</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>33</volume><issue>17</issue><spage>11437</spage><epage>11446</epage><pages>11437-11446</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>The goal of this paper is to introduce a novel hybrid model called multi-fuzzy N -soft set, and to design an adjustable decision-making methodology for solving problems where the inputs appear in this form. The new model enhances the virtues of multi-fuzzy set theory with the benefits of N -soft sets, two models that have been extensively investigated in recent years. The theoretical setting that arises allows us to incorporate data on the occurrence of ratings or grades (the defining characteristic of N -soft sets) in a multi-fuzzy environment. We perform a set-theoretical analysis of multi-fuzzy N -soft sets in order to establish the fundamental properties of their behavior. Then we develop a highly adaptable approach to decision-making in this new setting. This methodology takes advantage of a flexible procedure for the conversion of the original data to a hesitant N -soft setting, where we can resort to scores. Examples illustrate its application and the role of each parameter in the decision-making procedure.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-020-05647-3</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6883-4402</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2021-09, Vol.33 (17), p.11437-11446
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2560164232
source SpringerLink Journals
subjects Artificial Intelligence
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Decision making
Fuzzy logic
Fuzzy set theory
Fuzzy sets
Image Processing and Computer Vision
Original Article
Probability and Statistics in Computer Science
title The multi-fuzzy N-soft set and its applications to decision-making
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20multi-fuzzy%20N-soft%20set%20and%20its%20applications%20to%20decision-making&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Fatimah,%20Fatia&rft.date=2021-09-01&rft.volume=33&rft.issue=17&rft.spage=11437&rft.epage=11446&rft.pages=11437-11446&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-020-05647-3&rft_dat=%3Cproquest_cross%3E2560164232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560164232&rft_id=info:pmid/&rfr_iscdi=true