The multi-fuzzy N-soft set and its applications to decision-making
The goal of this paper is to introduce a novel hybrid model called multi-fuzzy N -soft set, and to design an adjustable decision-making methodology for solving problems where the inputs appear in this form. The new model enhances the virtues of multi-fuzzy set theory with the benefits of N -soft set...
Gespeichert in:
Veröffentlicht in: | Neural computing & applications 2021-09, Vol.33 (17), p.11437-11446 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11446 |
---|---|
container_issue | 17 |
container_start_page | 11437 |
container_title | Neural computing & applications |
container_volume | 33 |
creator | Fatimah, Fatia Alcantud, José Carlos R. |
description | The goal of this paper is to introduce a novel hybrid model called multi-fuzzy
N
-soft set, and to design an adjustable decision-making methodology for solving problems where the inputs appear in this form. The new model enhances the virtues of multi-fuzzy set theory with the benefits of
N
-soft sets, two models that have been extensively investigated in recent years. The theoretical setting that arises allows us to incorporate data on the occurrence of ratings or grades (the defining characteristic of
N
-soft sets) in a multi-fuzzy environment. We perform a set-theoretical analysis of multi-fuzzy
N
-soft sets in order to establish the fundamental properties of their behavior. Then we develop a highly adaptable approach to decision-making in this new setting. This methodology takes advantage of a flexible procedure for the conversion of the original data to a hesitant
N
-soft setting, where we can resort to scores. Examples illustrate its application and the role of each parameter in the decision-making procedure. |
doi_str_mv | 10.1007/s00521-020-05647-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560164232</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560164232</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b7da929d84dec79ada9985c3fe36d7a0d509684b9994af3e71a4ae827d448bde3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMn4mXUPGSKtiUteXETklpk2A7i_brMQSJHavR1dwzIx2ELilcU4DiJgJIRgkwICCVKAg_QjMqOCccZHmMZqBFXivBT9FZjBsAEKqUM3S3evd4N25TS5rxcNjjFxL7JuHoE7adw22K2A7Dtq1tavsu4tRj5-s25kB29qPt1ufopLHb6C9-5xy9PdyvFk9k-fr4vLhdkppTnUhVOKuZdqXIfKFtTrqUNW88V66w4CRoVYpKay1sw31BrbC-ZIUToqyc53N0Nd0dQv85-pjMph9Dl18aJhVQJRhnucWmVh36GINvzBDanQ17Q8F8uzKTK5NdmR9XhmeIT1DM5W7tw9_pf6gv-kZsEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560164232</pqid></control><display><type>article</type><title>The multi-fuzzy N-soft set and its applications to decision-making</title><source>SpringerLink Journals</source><creator>Fatimah, Fatia ; Alcantud, José Carlos R.</creator><creatorcontrib>Fatimah, Fatia ; Alcantud, José Carlos R.</creatorcontrib><description>The goal of this paper is to introduce a novel hybrid model called multi-fuzzy
N
-soft set, and to design an adjustable decision-making methodology for solving problems where the inputs appear in this form. The new model enhances the virtues of multi-fuzzy set theory with the benefits of
N
-soft sets, two models that have been extensively investigated in recent years. The theoretical setting that arises allows us to incorporate data on the occurrence of ratings or grades (the defining characteristic of
N
-soft sets) in a multi-fuzzy environment. We perform a set-theoretical analysis of multi-fuzzy
N
-soft sets in order to establish the fundamental properties of their behavior. Then we develop a highly adaptable approach to decision-making in this new setting. This methodology takes advantage of a flexible procedure for the conversion of the original data to a hesitant
N
-soft setting, where we can resort to scores. Examples illustrate its application and the role of each parameter in the decision-making procedure.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-020-05647-3</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Decision making ; Fuzzy logic ; Fuzzy set theory ; Fuzzy sets ; Image Processing and Computer Vision ; Original Article ; Probability and Statistics in Computer Science</subject><ispartof>Neural computing & applications, 2021-09, Vol.33 (17), p.11437-11446</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b7da929d84dec79ada9985c3fe36d7a0d509684b9994af3e71a4ae827d448bde3</citedby><cites>FETCH-LOGICAL-c319t-b7da929d84dec79ada9985c3fe36d7a0d509684b9994af3e71a4ae827d448bde3</cites><orcidid>0000-0002-6883-4402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-020-05647-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-020-05647-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Fatimah, Fatia</creatorcontrib><creatorcontrib>Alcantud, José Carlos R.</creatorcontrib><title>The multi-fuzzy N-soft set and its applications to decision-making</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>The goal of this paper is to introduce a novel hybrid model called multi-fuzzy
N
-soft set, and to design an adjustable decision-making methodology for solving problems where the inputs appear in this form. The new model enhances the virtues of multi-fuzzy set theory with the benefits of
N
-soft sets, two models that have been extensively investigated in recent years. The theoretical setting that arises allows us to incorporate data on the occurrence of ratings or grades (the defining characteristic of
N
-soft sets) in a multi-fuzzy environment. We perform a set-theoretical analysis of multi-fuzzy
N
-soft sets in order to establish the fundamental properties of their behavior. Then we develop a highly adaptable approach to decision-making in this new setting. This methodology takes advantage of a flexible procedure for the conversion of the original data to a hesitant
N
-soft setting, where we can resort to scores. Examples illustrate its application and the role of each parameter in the decision-making procedure.</description><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Decision making</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>Fuzzy sets</subject><subject>Image Processing and Computer Vision</subject><subject>Original Article</subject><subject>Probability and Statistics in Computer Science</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kMtOwzAQRS0EEqXwA6wssTaMn4mXUPGSKtiUteXETklpk2A7i_brMQSJHavR1dwzIx2ELilcU4DiJgJIRgkwICCVKAg_QjMqOCccZHmMZqBFXivBT9FZjBsAEKqUM3S3evd4N25TS5rxcNjjFxL7JuHoE7adw22K2A7Dtq1tavsu4tRj5-s25kB29qPt1ufopLHb6C9-5xy9PdyvFk9k-fr4vLhdkppTnUhVOKuZdqXIfKFtTrqUNW88V66w4CRoVYpKay1sw31BrbC-ZIUToqyc53N0Nd0dQv85-pjMph9Dl18aJhVQJRhnucWmVh36GINvzBDanQ17Q8F8uzKTK5NdmR9XhmeIT1DM5W7tw9_pf6gv-kZsEQ</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Fatimah, Fatia</creator><creator>Alcantud, José Carlos R.</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-6883-4402</orcidid></search><sort><creationdate>20210901</creationdate><title>The multi-fuzzy N-soft set and its applications to decision-making</title><author>Fatimah, Fatia ; Alcantud, José Carlos R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b7da929d84dec79ada9985c3fe36d7a0d509684b9994af3e71a4ae827d448bde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Decision making</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>Fuzzy sets</topic><topic>Image Processing and Computer Vision</topic><topic>Original Article</topic><topic>Probability and Statistics in Computer Science</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fatimah, Fatia</creatorcontrib><creatorcontrib>Alcantud, José Carlos R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fatimah, Fatia</au><au>Alcantud, José Carlos R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The multi-fuzzy N-soft set and its applications to decision-making</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>33</volume><issue>17</issue><spage>11437</spage><epage>11446</epage><pages>11437-11446</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>The goal of this paper is to introduce a novel hybrid model called multi-fuzzy
N
-soft set, and to design an adjustable decision-making methodology for solving problems where the inputs appear in this form. The new model enhances the virtues of multi-fuzzy set theory with the benefits of
N
-soft sets, two models that have been extensively investigated in recent years. The theoretical setting that arises allows us to incorporate data on the occurrence of ratings or grades (the defining characteristic of
N
-soft sets) in a multi-fuzzy environment. We perform a set-theoretical analysis of multi-fuzzy
N
-soft sets in order to establish the fundamental properties of their behavior. Then we develop a highly adaptable approach to decision-making in this new setting. This methodology takes advantage of a flexible procedure for the conversion of the original data to a hesitant
N
-soft setting, where we can resort to scores. Examples illustrate its application and the role of each parameter in the decision-making procedure.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-020-05647-3</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6883-4402</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2021-09, Vol.33 (17), p.11437-11446 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2560164232 |
source | SpringerLink Journals |
subjects | Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Decision making Fuzzy logic Fuzzy set theory Fuzzy sets Image Processing and Computer Vision Original Article Probability and Statistics in Computer Science |
title | The multi-fuzzy N-soft set and its applications to decision-making |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T07%3A49%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20multi-fuzzy%20N-soft%20set%20and%20its%20applications%20to%20decision-making&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Fatimah,%20Fatia&rft.date=2021-09-01&rft.volume=33&rft.issue=17&rft.spage=11437&rft.epage=11446&rft.pages=11437-11446&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-020-05647-3&rft_dat=%3Cproquest_cross%3E2560164232%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560164232&rft_id=info:pmid/&rfr_iscdi=true |