Investigation of vulcanization fouling behavior of biomimetic liquid-infused slippery surfaces
Mold fouling during vulcanization is a widespread issue faced by tire industry that urgently needed to be addressed as it can degrade comprehensive performance of molded products and increase production time for cleaning mold, resulting in tremendous economic loss and resource consumption. Here, a n...
Gespeichert in:
Veröffentlicht in: | Journal of materials science 2021-10, Vol.56 (29), p.16290-16306 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 16306 |
---|---|
container_issue | 29 |
container_start_page | 16290 |
container_title | Journal of materials science |
container_volume | 56 |
creator | Liu, Cansen Zhuang, Mingta Huang, Qishan Mai, Yongjin Zhang, Liuyan Jie, Xiaohua |
description | Mold fouling during vulcanization is a widespread issue faced by tire industry that urgently needed to be addressed as it can degrade comprehensive performance of molded products and increase production time for cleaning mold, resulting in tremendous economic loss and resource consumption. Here, a novel and promising fouling mitigation strategy inspired by nature is presented, and its antifouling behavior in vulcanization conditions is investigated. The inspired slippery liquid-infused surfaces were successfully designed on aluminum alloy by anodic oxidation, followed by myristic acid modification and impregnation with perfluorinated oil. The prepared surfaces showed a water contact angle of 112.3° and sliding angle of 0.5°, accompanying with self-cleaning ability, stability for repelling hot water and under high-pressure condition as well as excellent corrosion resistance in 0.05 M H
2
SO
4
corrosive medium. Moreover, remarkable antifouling performance was obtained for slippery liquid-infused surfaces as no trace of fouling was observed after vulcanization test and thus a potential strategy for practical industrial applications.
Graphical abstract |
doi_str_mv | 10.1007/s10853-021-06303-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2560160723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A671783575</galeid><sourcerecordid>A671783575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-4824ef4cc4e83f43ee4ae433a6c6f9295f760f919635c08b2795a72854a550e43</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpodu0f6AnQ085OBl928cQ0nQhEOjHtUKrHbkKtrWR7CXJr4-2LoSFUHQYMTzvzLy8hHymcEYB9Hmm0EheA6M1KA68Fm_IikpdPg3wt2QFwFjNhKLvyYec7wBAakZX5Pd63GOeQmenEMcq-mo_986O4Wlp-Dj3YeyqDf6x-xDTgdiEOIQBp-CqPtzPYVuH0c8Zt1Xuw26H6bHKc_LWYf5I3nnbZ_z0r56QX1-vfl5-q29ur9eXFze1EwymciQT6IVzAhvuBUcUFgXnVjnlW9ZKrxX4lraKSwfNhulWWs0aKayUUMgT8mWZu0vxfi6GzF2c01hWGiYVUAWa8Reqsz2acnScknVDyM5cKE11w6WWhTp7hSpvi0NwcUQfSv9IcHokKMyED1Nn55zN-sf3Y5YtrEsx54Te7FIYbHo0FMwhSrNEaUqU5m-U5uCOL6Jc4LHD9OLuP6pnIFqfvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560160723</pqid></control><display><type>article</type><title>Investigation of vulcanization fouling behavior of biomimetic liquid-infused slippery surfaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Cansen ; Zhuang, Mingta ; Huang, Qishan ; Mai, Yongjin ; Zhang, Liuyan ; Jie, Xiaohua</creator><creatorcontrib>Liu, Cansen ; Zhuang, Mingta ; Huang, Qishan ; Mai, Yongjin ; Zhang, Liuyan ; Jie, Xiaohua</creatorcontrib><description>Mold fouling during vulcanization is a widespread issue faced by tire industry that urgently needed to be addressed as it can degrade comprehensive performance of molded products and increase production time for cleaning mold, resulting in tremendous economic loss and resource consumption. Here, a novel and promising fouling mitigation strategy inspired by nature is presented, and its antifouling behavior in vulcanization conditions is investigated. The inspired slippery liquid-infused surfaces were successfully designed on aluminum alloy by anodic oxidation, followed by myristic acid modification and impregnation with perfluorinated oil. The prepared surfaces showed a water contact angle of 112.3° and sliding angle of 0.5°, accompanying with self-cleaning ability, stability for repelling hot water and under high-pressure condition as well as excellent corrosion resistance in 0.05 M H
2
SO
4
corrosive medium. Moreover, remarkable antifouling performance was obtained for slippery liquid-infused surfaces as no trace of fouling was observed after vulcanization test and thus a potential strategy for practical industrial applications.
Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06303-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Aluminum base alloys ; Anodizing ; Antifouling ; Biomimetics ; Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Cleaning ; Contact angle ; Corrosion and anti-corrosives ; Corrosion resistance ; Crosslinked polymers ; Crystallography and Scattering Methods ; Economic impact ; Industrial applications ; Investigations ; Materials Science ; Methylene blue ; Molds ; Oxidation ; Performance degradation ; Polymer Sciences ; Saturated fatty acids ; Solid Mechanics ; Sulfuric acid ; Tire industry ; Vulcanization</subject><ispartof>Journal of materials science, 2021-10, Vol.56 (29), p.16290-16306</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-4824ef4cc4e83f43ee4ae433a6c6f9295f760f919635c08b2795a72854a550e43</citedby><cites>FETCH-LOGICAL-c420t-4824ef4cc4e83f43ee4ae433a6c6f9295f760f919635c08b2795a72854a550e43</cites><orcidid>0000-0003-0853-8481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-021-06303-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-021-06303-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Cansen</creatorcontrib><creatorcontrib>Zhuang, Mingta</creatorcontrib><creatorcontrib>Huang, Qishan</creatorcontrib><creatorcontrib>Mai, Yongjin</creatorcontrib><creatorcontrib>Zhang, Liuyan</creatorcontrib><creatorcontrib>Jie, Xiaohua</creatorcontrib><title>Investigation of vulcanization fouling behavior of biomimetic liquid-infused slippery surfaces</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Mold fouling during vulcanization is a widespread issue faced by tire industry that urgently needed to be addressed as it can degrade comprehensive performance of molded products and increase production time for cleaning mold, resulting in tremendous economic loss and resource consumption. Here, a novel and promising fouling mitigation strategy inspired by nature is presented, and its antifouling behavior in vulcanization conditions is investigated. The inspired slippery liquid-infused surfaces were successfully designed on aluminum alloy by anodic oxidation, followed by myristic acid modification and impregnation with perfluorinated oil. The prepared surfaces showed a water contact angle of 112.3° and sliding angle of 0.5°, accompanying with self-cleaning ability, stability for repelling hot water and under high-pressure condition as well as excellent corrosion resistance in 0.05 M H
2
SO
4
corrosive medium. Moreover, remarkable antifouling performance was obtained for slippery liquid-infused surfaces as no trace of fouling was observed after vulcanization test and thus a potential strategy for practical industrial applications.
Graphical abstract</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Anodizing</subject><subject>Antifouling</subject><subject>Biomimetics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Cleaning</subject><subject>Contact angle</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion resistance</subject><subject>Crosslinked polymers</subject><subject>Crystallography and Scattering Methods</subject><subject>Economic impact</subject><subject>Industrial applications</subject><subject>Investigations</subject><subject>Materials Science</subject><subject>Methylene blue</subject><subject>Molds</subject><subject>Oxidation</subject><subject>Performance degradation</subject><subject>Polymer Sciences</subject><subject>Saturated fatty acids</subject><subject>Solid Mechanics</subject><subject>Sulfuric acid</subject><subject>Tire industry</subject><subject>Vulcanization</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU1r3DAQhkVpodu0f6AnQ085OBl928cQ0nQhEOjHtUKrHbkKtrWR7CXJr4-2LoSFUHQYMTzvzLy8hHymcEYB9Hmm0EheA6M1KA68Fm_IikpdPg3wt2QFwFjNhKLvyYec7wBAakZX5Pd63GOeQmenEMcq-mo_986O4Wlp-Dj3YeyqDf6x-xDTgdiEOIQBp-CqPtzPYVuH0c8Zt1Xuw26H6bHKc_LWYf5I3nnbZ_z0r56QX1-vfl5-q29ur9eXFze1EwymciQT6IVzAhvuBUcUFgXnVjnlW9ZKrxX4lraKSwfNhulWWs0aKayUUMgT8mWZu0vxfi6GzF2c01hWGiYVUAWa8Reqsz2acnScknVDyM5cKE11w6WWhTp7hSpvi0NwcUQfSv9IcHokKMyED1Nn55zN-sf3Y5YtrEsx54Te7FIYbHo0FMwhSrNEaUqU5m-U5uCOL6Jc4LHD9OLuP6pnIFqfvg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Liu, Cansen</creator><creator>Zhuang, Mingta</creator><creator>Huang, Qishan</creator><creator>Mai, Yongjin</creator><creator>Zhang, Liuyan</creator><creator>Jie, Xiaohua</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0853-8481</orcidid></search><sort><creationdate>20211001</creationdate><title>Investigation of vulcanization fouling behavior of biomimetic liquid-infused slippery surfaces</title><author>Liu, Cansen ; Zhuang, Mingta ; Huang, Qishan ; Mai, Yongjin ; Zhang, Liuyan ; Jie, Xiaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-4824ef4cc4e83f43ee4ae433a6c6f9295f760f919635c08b2795a72854a550e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Anodizing</topic><topic>Antifouling</topic><topic>Biomimetics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Cleaning</topic><topic>Contact angle</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion resistance</topic><topic>Crosslinked polymers</topic><topic>Crystallography and Scattering Methods</topic><topic>Economic impact</topic><topic>Industrial applications</topic><topic>Investigations</topic><topic>Materials Science</topic><topic>Methylene blue</topic><topic>Molds</topic><topic>Oxidation</topic><topic>Performance degradation</topic><topic>Polymer Sciences</topic><topic>Saturated fatty acids</topic><topic>Solid Mechanics</topic><topic>Sulfuric acid</topic><topic>Tire industry</topic><topic>Vulcanization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Cansen</creatorcontrib><creatorcontrib>Zhuang, Mingta</creatorcontrib><creatorcontrib>Huang, Qishan</creatorcontrib><creatorcontrib>Mai, Yongjin</creatorcontrib><creatorcontrib>Zhang, Liuyan</creatorcontrib><creatorcontrib>Jie, Xiaohua</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Cansen</au><au>Zhuang, Mingta</au><au>Huang, Qishan</au><au>Mai, Yongjin</au><au>Zhang, Liuyan</au><au>Jie, Xiaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of vulcanization fouling behavior of biomimetic liquid-infused slippery surfaces</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>56</volume><issue>29</issue><spage>16290</spage><epage>16306</epage><pages>16290-16306</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Mold fouling during vulcanization is a widespread issue faced by tire industry that urgently needed to be addressed as it can degrade comprehensive performance of molded products and increase production time for cleaning mold, resulting in tremendous economic loss and resource consumption. Here, a novel and promising fouling mitigation strategy inspired by nature is presented, and its antifouling behavior in vulcanization conditions is investigated. The inspired slippery liquid-infused surfaces were successfully designed on aluminum alloy by anodic oxidation, followed by myristic acid modification and impregnation with perfluorinated oil. The prepared surfaces showed a water contact angle of 112.3° and sliding angle of 0.5°, accompanying with self-cleaning ability, stability for repelling hot water and under high-pressure condition as well as excellent corrosion resistance in 0.05 M H
2
SO
4
corrosive medium. Moreover, remarkable antifouling performance was obtained for slippery liquid-infused surfaces as no trace of fouling was observed after vulcanization test and thus a potential strategy for practical industrial applications.
Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06303-4</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0853-8481</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2461 |
ispartof | Journal of materials science, 2021-10, Vol.56 (29), p.16290-16306 |
issn | 0022-2461 1573-4803 |
language | eng |
recordid | cdi_proquest_journals_2560160723 |
source | SpringerLink Journals - AutoHoldings |
subjects | Alloys Aluminum base alloys Anodizing Antifouling Biomimetics Characterization and Evaluation of Materials Chemical Routes to Materials Chemistry and Materials Science Classical Mechanics Cleaning Contact angle Corrosion and anti-corrosives Corrosion resistance Crosslinked polymers Crystallography and Scattering Methods Economic impact Industrial applications Investigations Materials Science Methylene blue Molds Oxidation Performance degradation Polymer Sciences Saturated fatty acids Solid Mechanics Sulfuric acid Tire industry Vulcanization |
title | Investigation of vulcanization fouling behavior of biomimetic liquid-infused slippery surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20vulcanization%20fouling%20behavior%20of%20biomimetic%20liquid-infused%20slippery%20surfaces&rft.jtitle=Journal%20of%20materials%20science&rft.au=Liu,%20Cansen&rft.date=2021-10-01&rft.volume=56&rft.issue=29&rft.spage=16290&rft.epage=16306&rft.pages=16290-16306&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06303-4&rft_dat=%3Cgale_proqu%3EA671783575%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560160723&rft_id=info:pmid/&rft_galeid=A671783575&rfr_iscdi=true |