Investigation of vulcanization fouling behavior of biomimetic liquid-infused slippery surfaces

Mold fouling during vulcanization is a widespread issue faced by tire industry that urgently needed to be addressed as it can degrade comprehensive performance of molded products and increase production time for cleaning mold, resulting in tremendous economic loss and resource consumption. Here, a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2021-10, Vol.56 (29), p.16290-16306
Hauptverfasser: Liu, Cansen, Zhuang, Mingta, Huang, Qishan, Mai, Yongjin, Zhang, Liuyan, Jie, Xiaohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16306
container_issue 29
container_start_page 16290
container_title Journal of materials science
container_volume 56
creator Liu, Cansen
Zhuang, Mingta
Huang, Qishan
Mai, Yongjin
Zhang, Liuyan
Jie, Xiaohua
description Mold fouling during vulcanization is a widespread issue faced by tire industry that urgently needed to be addressed as it can degrade comprehensive performance of molded products and increase production time for cleaning mold, resulting in tremendous economic loss and resource consumption. Here, a novel and promising fouling mitigation strategy inspired by nature is presented, and its antifouling behavior in vulcanization conditions is investigated. The inspired slippery liquid-infused surfaces were successfully designed on aluminum alloy by anodic oxidation, followed by myristic acid modification and impregnation with perfluorinated oil. The prepared surfaces showed a water contact angle of 112.3° and sliding angle of 0.5°, accompanying with self-cleaning ability, stability for repelling hot water and under high-pressure condition as well as excellent corrosion resistance in 0.05 M H 2 SO 4 corrosive medium. Moreover, remarkable antifouling performance was obtained for slippery liquid-infused surfaces as no trace of fouling was observed after vulcanization test and thus a potential strategy for practical industrial applications. Graphical abstract
doi_str_mv 10.1007/s10853-021-06303-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2560160723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A671783575</galeid><sourcerecordid>A671783575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-4824ef4cc4e83f43ee4ae433a6c6f9295f760f919635c08b2795a72854a550e43</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhkVpodu0f6AnQ085OBl928cQ0nQhEOjHtUKrHbkKtrWR7CXJr4-2LoSFUHQYMTzvzLy8hHymcEYB9Hmm0EheA6M1KA68Fm_IikpdPg3wt2QFwFjNhKLvyYec7wBAakZX5Pd63GOeQmenEMcq-mo_986O4Wlp-Dj3YeyqDf6x-xDTgdiEOIQBp-CqPtzPYVuH0c8Zt1Xuw26H6bHKc_LWYf5I3nnbZ_z0r56QX1-vfl5-q29ur9eXFze1EwymciQT6IVzAhvuBUcUFgXnVjnlW9ZKrxX4lraKSwfNhulWWs0aKayUUMgT8mWZu0vxfi6GzF2c01hWGiYVUAWa8Reqsz2acnScknVDyM5cKE11w6WWhTp7hSpvi0NwcUQfSv9IcHokKMyED1Nn55zN-sf3Y5YtrEsx54Te7FIYbHo0FMwhSrNEaUqU5m-U5uCOL6Jc4LHD9OLuP6pnIFqfvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560160723</pqid></control><display><type>article</type><title>Investigation of vulcanization fouling behavior of biomimetic liquid-infused slippery surfaces</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liu, Cansen ; Zhuang, Mingta ; Huang, Qishan ; Mai, Yongjin ; Zhang, Liuyan ; Jie, Xiaohua</creator><creatorcontrib>Liu, Cansen ; Zhuang, Mingta ; Huang, Qishan ; Mai, Yongjin ; Zhang, Liuyan ; Jie, Xiaohua</creatorcontrib><description>Mold fouling during vulcanization is a widespread issue faced by tire industry that urgently needed to be addressed as it can degrade comprehensive performance of molded products and increase production time for cleaning mold, resulting in tremendous economic loss and resource consumption. Here, a novel and promising fouling mitigation strategy inspired by nature is presented, and its antifouling behavior in vulcanization conditions is investigated. The inspired slippery liquid-infused surfaces were successfully designed on aluminum alloy by anodic oxidation, followed by myristic acid modification and impregnation with perfluorinated oil. The prepared surfaces showed a water contact angle of 112.3° and sliding angle of 0.5°, accompanying with self-cleaning ability, stability for repelling hot water and under high-pressure condition as well as excellent corrosion resistance in 0.05 M H 2 SO 4 corrosive medium. Moreover, remarkable antifouling performance was obtained for slippery liquid-infused surfaces as no trace of fouling was observed after vulcanization test and thus a potential strategy for practical industrial applications. Graphical abstract</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06303-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Alloys ; Aluminum base alloys ; Anodizing ; Antifouling ; Biomimetics ; Characterization and Evaluation of Materials ; Chemical Routes to Materials ; Chemistry and Materials Science ; Classical Mechanics ; Cleaning ; Contact angle ; Corrosion and anti-corrosives ; Corrosion resistance ; Crosslinked polymers ; Crystallography and Scattering Methods ; Economic impact ; Industrial applications ; Investigations ; Materials Science ; Methylene blue ; Molds ; Oxidation ; Performance degradation ; Polymer Sciences ; Saturated fatty acids ; Solid Mechanics ; Sulfuric acid ; Tire industry ; Vulcanization</subject><ispartof>Journal of materials science, 2021-10, Vol.56 (29), p.16290-16306</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-4824ef4cc4e83f43ee4ae433a6c6f9295f760f919635c08b2795a72854a550e43</citedby><cites>FETCH-LOGICAL-c420t-4824ef4cc4e83f43ee4ae433a6c6f9295f760f919635c08b2795a72854a550e43</cites><orcidid>0000-0003-0853-8481</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-021-06303-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-021-06303-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liu, Cansen</creatorcontrib><creatorcontrib>Zhuang, Mingta</creatorcontrib><creatorcontrib>Huang, Qishan</creatorcontrib><creatorcontrib>Mai, Yongjin</creatorcontrib><creatorcontrib>Zhang, Liuyan</creatorcontrib><creatorcontrib>Jie, Xiaohua</creatorcontrib><title>Investigation of vulcanization fouling behavior of biomimetic liquid-infused slippery surfaces</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Mold fouling during vulcanization is a widespread issue faced by tire industry that urgently needed to be addressed as it can degrade comprehensive performance of molded products and increase production time for cleaning mold, resulting in tremendous economic loss and resource consumption. Here, a novel and promising fouling mitigation strategy inspired by nature is presented, and its antifouling behavior in vulcanization conditions is investigated. The inspired slippery liquid-infused surfaces were successfully designed on aluminum alloy by anodic oxidation, followed by myristic acid modification and impregnation with perfluorinated oil. The prepared surfaces showed a water contact angle of 112.3° and sliding angle of 0.5°, accompanying with self-cleaning ability, stability for repelling hot water and under high-pressure condition as well as excellent corrosion resistance in 0.05 M H 2 SO 4 corrosive medium. Moreover, remarkable antifouling performance was obtained for slippery liquid-infused surfaces as no trace of fouling was observed after vulcanization test and thus a potential strategy for practical industrial applications. Graphical abstract</description><subject>Alloys</subject><subject>Aluminum base alloys</subject><subject>Anodizing</subject><subject>Antifouling</subject><subject>Biomimetics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemical Routes to Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Cleaning</subject><subject>Contact angle</subject><subject>Corrosion and anti-corrosives</subject><subject>Corrosion resistance</subject><subject>Crosslinked polymers</subject><subject>Crystallography and Scattering Methods</subject><subject>Economic impact</subject><subject>Industrial applications</subject><subject>Investigations</subject><subject>Materials Science</subject><subject>Methylene blue</subject><subject>Molds</subject><subject>Oxidation</subject><subject>Performance degradation</subject><subject>Polymer Sciences</subject><subject>Saturated fatty acids</subject><subject>Solid Mechanics</subject><subject>Sulfuric acid</subject><subject>Tire industry</subject><subject>Vulcanization</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kU1r3DAQhkVpodu0f6AnQ085OBl928cQ0nQhEOjHtUKrHbkKtrWR7CXJr4-2LoSFUHQYMTzvzLy8hHymcEYB9Hmm0EheA6M1KA68Fm_IikpdPg3wt2QFwFjNhKLvyYec7wBAakZX5Pd63GOeQmenEMcq-mo_986O4Wlp-Dj3YeyqDf6x-xDTgdiEOIQBp-CqPtzPYVuH0c8Zt1Xuw26H6bHKc_LWYf5I3nnbZ_z0r56QX1-vfl5-q29ur9eXFze1EwymciQT6IVzAhvuBUcUFgXnVjnlW9ZKrxX4lraKSwfNhulWWs0aKayUUMgT8mWZu0vxfi6GzF2c01hWGiYVUAWa8Reqsz2acnScknVDyM5cKE11w6WWhTp7hSpvi0NwcUQfSv9IcHokKMyED1Nn55zN-sf3Y5YtrEsx54Te7FIYbHo0FMwhSrNEaUqU5m-U5uCOL6Jc4LHD9OLuP6pnIFqfvg</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Liu, Cansen</creator><creator>Zhuang, Mingta</creator><creator>Huang, Qishan</creator><creator>Mai, Yongjin</creator><creator>Zhang, Liuyan</creator><creator>Jie, Xiaohua</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0853-8481</orcidid></search><sort><creationdate>20211001</creationdate><title>Investigation of vulcanization fouling behavior of biomimetic liquid-infused slippery surfaces</title><author>Liu, Cansen ; Zhuang, Mingta ; Huang, Qishan ; Mai, Yongjin ; Zhang, Liuyan ; Jie, Xiaohua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-4824ef4cc4e83f43ee4ae433a6c6f9295f760f919635c08b2795a72854a550e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alloys</topic><topic>Aluminum base alloys</topic><topic>Anodizing</topic><topic>Antifouling</topic><topic>Biomimetics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemical Routes to Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Cleaning</topic><topic>Contact angle</topic><topic>Corrosion and anti-corrosives</topic><topic>Corrosion resistance</topic><topic>Crosslinked polymers</topic><topic>Crystallography and Scattering Methods</topic><topic>Economic impact</topic><topic>Industrial applications</topic><topic>Investigations</topic><topic>Materials Science</topic><topic>Methylene blue</topic><topic>Molds</topic><topic>Oxidation</topic><topic>Performance degradation</topic><topic>Polymer Sciences</topic><topic>Saturated fatty acids</topic><topic>Solid Mechanics</topic><topic>Sulfuric acid</topic><topic>Tire industry</topic><topic>Vulcanization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Cansen</creatorcontrib><creatorcontrib>Zhuang, Mingta</creatorcontrib><creatorcontrib>Huang, Qishan</creatorcontrib><creatorcontrib>Mai, Yongjin</creatorcontrib><creatorcontrib>Zhang, Liuyan</creatorcontrib><creatorcontrib>Jie, Xiaohua</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Cansen</au><au>Zhuang, Mingta</au><au>Huang, Qishan</au><au>Mai, Yongjin</au><au>Zhang, Liuyan</au><au>Jie, Xiaohua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of vulcanization fouling behavior of biomimetic liquid-infused slippery surfaces</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>56</volume><issue>29</issue><spage>16290</spage><epage>16306</epage><pages>16290-16306</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Mold fouling during vulcanization is a widespread issue faced by tire industry that urgently needed to be addressed as it can degrade comprehensive performance of molded products and increase production time for cleaning mold, resulting in tremendous economic loss and resource consumption. Here, a novel and promising fouling mitigation strategy inspired by nature is presented, and its antifouling behavior in vulcanization conditions is investigated. The inspired slippery liquid-infused surfaces were successfully designed on aluminum alloy by anodic oxidation, followed by myristic acid modification and impregnation with perfluorinated oil. The prepared surfaces showed a water contact angle of 112.3° and sliding angle of 0.5°, accompanying with self-cleaning ability, stability for repelling hot water and under high-pressure condition as well as excellent corrosion resistance in 0.05 M H 2 SO 4 corrosive medium. Moreover, remarkable antifouling performance was obtained for slippery liquid-infused surfaces as no trace of fouling was observed after vulcanization test and thus a potential strategy for practical industrial applications. Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06303-4</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0853-8481</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2021-10, Vol.56 (29), p.16290-16306
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2560160723
source SpringerLink Journals - AutoHoldings
subjects Alloys
Aluminum base alloys
Anodizing
Antifouling
Biomimetics
Characterization and Evaluation of Materials
Chemical Routes to Materials
Chemistry and Materials Science
Classical Mechanics
Cleaning
Contact angle
Corrosion and anti-corrosives
Corrosion resistance
Crosslinked polymers
Crystallography and Scattering Methods
Economic impact
Industrial applications
Investigations
Materials Science
Methylene blue
Molds
Oxidation
Performance degradation
Polymer Sciences
Saturated fatty acids
Solid Mechanics
Sulfuric acid
Tire industry
Vulcanization
title Investigation of vulcanization fouling behavior of biomimetic liquid-infused slippery surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20vulcanization%20fouling%20behavior%20of%20biomimetic%20liquid-infused%20slippery%20surfaces&rft.jtitle=Journal%20of%20materials%20science&rft.au=Liu,%20Cansen&rft.date=2021-10-01&rft.volume=56&rft.issue=29&rft.spage=16290&rft.epage=16306&rft.pages=16290-16306&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06303-4&rft_dat=%3Cgale_proqu%3EA671783575%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560160723&rft_id=info:pmid/&rft_galeid=A671783575&rfr_iscdi=true