Teaching a neural network to attach and detach electrons from molecules
Interatomic potentials derived with Machine Learning algorithms such as Deep-Neural Networks (DNNs), achieve the accuracy of high-fidelity quantum mechanical (QM) methods in areas traditionally dominated by empirical force fields and allow performing massive simulations. Most DNN potentials were par...
Gespeichert in:
Veröffentlicht in: | Nature communications 2021-08, Vol.12 (1), p.4870-11, Article 4870 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 1 |
container_start_page | 4870 |
container_title | Nature communications |
container_volume | 12 |
creator | Zubatyuk, Roman Smith, Justin S. Nebgen, Benjamin T. Tretiak, Sergei Isayev, Olexandr |
description | Interatomic potentials derived with Machine Learning algorithms such as Deep-Neural Networks (DNNs), achieve the accuracy of high-fidelity quantum mechanical (QM) methods in areas traditionally dominated by empirical force fields and allow performing massive simulations. Most DNN potentials were parametrized for neutral molecules or closed-shell ions due to architectural limitations. In this work, we propose an improved machine learning framework for simulating open-shell anions and cations. We introduce the AIMNet-NSE (Neural Spin Equilibration) architecture, which can predict molecular energies for an arbitrary combination of molecular charge and spin multiplicity with errors of about 2–3 kcal/mol and spin-charges with error errors ~0.01e for small and medium-sized organic molecules, compared to the reference QM simulations. The AIMNet-NSE model allows to fully bypass QM calculations and derive the ionization potential, electron affinity, and conceptual Density Functional Theory quantities like electronegativity, hardness, and condensed Fukui functions. We show that these descriptors, along with learned atomic representations, could be used to model chemical reactivity through an example of regioselectivity in electrophilic aromatic substitution reactions.
Quantum mechanical calculations of molecular ionized states are computationally quite expensive. This work reports a successful extension of a previous deep-neural networks approach towards transferable neural-network models for predicting multiple properties of open shell anions and cations. |
doi_str_mv | 10.1038/s41467-021-24904-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_webof</sourceid><recordid>TN_cdi_proquest_journals_2560157349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a292041c8fcb4567a97c14746760b48e</doaj_id><sourcerecordid>2560832537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-e53a9509ad63fb9f5bf101d687d90424172bdc97289d2039f5b6dc6c891f6eee3</originalsourceid><addsrcrecordid>eNqNkk9v1DAQxSMEolXpF-CAIrggoYD_xbEvSGgFpVIlLuVsOc5kN0tiF9uh4tsz2ZSl5YDIxXb8m-c3o1cUzyl5SwlX75KgQjYVYbRiQhNRkUfFKSOCVrRh_PG9_UlxntKe4Mc1VUI8LU644IqSmp4WF9dg3W7w29KWHuZoR1zybYjfyhxKmzPeltZ3ZQeHLYzgcgw-lX0MUzkFPM8jpGfFk96OCc7v1rPi66eP15vP1dWXi8vNh6vK1bLJFdTc6ppo20net7qv254S2knVdNgDE-i37ZxumNIdQ78IyM5JpzTtJQDws-Jy1e2C3ZubOEw2_jTBDubwI8StsTEPbgRjmV5m4FTvWoGvW904KhqcmiStUIvW-1XrZm4n6Bz4jP0_EH1444ed2YYfRvG6QW0UeLkKhJQHk9yQwe1c8B5nZKiiTAuJ0Ou7V2L4PkPKZhqSg3G0HsKcDKslUZzVvEH01V_oPszR4zwPFK0bLjRSbKVcDClF6I-OKTFLNsyaDYPZMIdsmMXqi_u9Hkt-JwGBNytwC23osRfwDo4YhkcqwblWS44Y0ur_6c2QbR6C34TZZyzla2lC3G8h_mnyH_5_AZ2v4zc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560157349</pqid></control><display><type>article</type><title>Teaching a neural network to attach and detach electrons from molecules</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Nature Free</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Zubatyuk, Roman ; Smith, Justin S. ; Nebgen, Benjamin T. ; Tretiak, Sergei ; Isayev, Olexandr</creator><creatorcontrib>Zubatyuk, Roman ; Smith, Justin S. ; Nebgen, Benjamin T. ; Tretiak, Sergei ; Isayev, Olexandr ; Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><description>Interatomic potentials derived with Machine Learning algorithms such as Deep-Neural Networks (DNNs), achieve the accuracy of high-fidelity quantum mechanical (QM) methods in areas traditionally dominated by empirical force fields and allow performing massive simulations. Most DNN potentials were parametrized for neutral molecules or closed-shell ions due to architectural limitations. In this work, we propose an improved machine learning framework for simulating open-shell anions and cations. We introduce the AIMNet-NSE (Neural Spin Equilibration) architecture, which can predict molecular energies for an arbitrary combination of molecular charge and spin multiplicity with errors of about 2–3 kcal/mol and spin-charges with error errors ~0.01e for small and medium-sized organic molecules, compared to the reference QM simulations. The AIMNet-NSE model allows to fully bypass QM calculations and derive the ionization potential, electron affinity, and conceptual Density Functional Theory quantities like electronegativity, hardness, and condensed Fukui functions. We show that these descriptors, along with learned atomic representations, could be used to model chemical reactivity through an example of regioselectivity in electrophilic aromatic substitution reactions.
Quantum mechanical calculations of molecular ionized states are computationally quite expensive. This work reports a successful extension of a previous deep-neural networks approach towards transferable neural-network models for predicting multiple properties of open shell anions and cations.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-021-24904-0</identifier><identifier>PMID: 34381051</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 639/638/563/606 ; 639/638/563/758 ; 639/638/630 ; Algorithms ; Anions ; Cations ; Chemical reactions ; Computer simulation ; Density functional theory ; Electron affinity ; Electronegativity ; Functionals ; Humanities and Social Sciences ; Ionization ; Ionization potentials ; Learning algorithms ; Machine learning ; Material Science ; MATERIALS SCIENCE ; multidisciplinary ; Multidisciplinary Sciences ; Neural networks ; Organic chemistry ; Quantum mechanics ; Regioselectivity ; Science ; Science & Technology ; Science & Technology - Other Topics ; Science (multidisciplinary) ; Substitution reactions</subject><ispartof>Nature communications, 2021-08, Vol.12 (1), p.4870-11, Article 4870</ispartof><rights>The Author(s) 2021</rights><rights>2021. The Author(s).</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>52</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000684339800002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c567t-e53a9509ad63fb9f5bf101d687d90424172bdc97289d2039f5b6dc6c891f6eee3</citedby><cites>FETCH-LOGICAL-c567t-e53a9509ad63fb9f5bf101d687d90424172bdc97289d2039f5b6dc6c891f6eee3</cites><orcidid>0000-0001-5310-3263 ; 0000-0001-5547-3647 ; 0000-0001-7581-8497 ; 0000-0001-7314-7896 ; 0000000175818497 ; 0000000155473647 ; 0000000153103263 ; 0000000173147896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357920/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357920/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39263,41125,42194,51581,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34381051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1812946$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zubatyuk, Roman</creatorcontrib><creatorcontrib>Smith, Justin S.</creatorcontrib><creatorcontrib>Nebgen, Benjamin T.</creatorcontrib><creatorcontrib>Tretiak, Sergei</creatorcontrib><creatorcontrib>Isayev, Olexandr</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><title>Teaching a neural network to attach and detach electrons from molecules</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>NAT COMMUN</addtitle><addtitle>Nat Commun</addtitle><description>Interatomic potentials derived with Machine Learning algorithms such as Deep-Neural Networks (DNNs), achieve the accuracy of high-fidelity quantum mechanical (QM) methods in areas traditionally dominated by empirical force fields and allow performing massive simulations. Most DNN potentials were parametrized for neutral molecules or closed-shell ions due to architectural limitations. In this work, we propose an improved machine learning framework for simulating open-shell anions and cations. We introduce the AIMNet-NSE (Neural Spin Equilibration) architecture, which can predict molecular energies for an arbitrary combination of molecular charge and spin multiplicity with errors of about 2–3 kcal/mol and spin-charges with error errors ~0.01e for small and medium-sized organic molecules, compared to the reference QM simulations. The AIMNet-NSE model allows to fully bypass QM calculations and derive the ionization potential, electron affinity, and conceptual Density Functional Theory quantities like electronegativity, hardness, and condensed Fukui functions. We show that these descriptors, along with learned atomic representations, could be used to model chemical reactivity through an example of regioselectivity in electrophilic aromatic substitution reactions.
Quantum mechanical calculations of molecular ionized states are computationally quite expensive. This work reports a successful extension of a previous deep-neural networks approach towards transferable neural-network models for predicting multiple properties of open shell anions and cations.</description><subject>119/118</subject><subject>639/638/563/606</subject><subject>639/638/563/758</subject><subject>639/638/630</subject><subject>Algorithms</subject><subject>Anions</subject><subject>Cations</subject><subject>Chemical reactions</subject><subject>Computer simulation</subject><subject>Density functional theory</subject><subject>Electron affinity</subject><subject>Electronegativity</subject><subject>Functionals</subject><subject>Humanities and Social Sciences</subject><subject>Ionization</subject><subject>Ionization potentials</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Material Science</subject><subject>MATERIALS SCIENCE</subject><subject>multidisciplinary</subject><subject>Multidisciplinary Sciences</subject><subject>Neural networks</subject><subject>Organic chemistry</subject><subject>Quantum mechanics</subject><subject>Regioselectivity</subject><subject>Science</subject><subject>Science & Technology</subject><subject>Science & Technology - Other Topics</subject><subject>Science (multidisciplinary)</subject><subject>Substitution reactions</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk9v1DAQxSMEolXpF-CAIrggoYD_xbEvSGgFpVIlLuVsOc5kN0tiF9uh4tsz2ZSl5YDIxXb8m-c3o1cUzyl5SwlX75KgQjYVYbRiQhNRkUfFKSOCVrRh_PG9_UlxntKe4Mc1VUI8LU644IqSmp4WF9dg3W7w29KWHuZoR1zybYjfyhxKmzPeltZ3ZQeHLYzgcgw-lX0MUzkFPM8jpGfFk96OCc7v1rPi66eP15vP1dWXi8vNh6vK1bLJFdTc6ppo20net7qv254S2knVdNgDE-i37ZxumNIdQ78IyM5JpzTtJQDws-Jy1e2C3ZubOEw2_jTBDubwI8StsTEPbgRjmV5m4FTvWoGvW904KhqcmiStUIvW-1XrZm4n6Bz4jP0_EH1444ed2YYfRvG6QW0UeLkKhJQHk9yQwe1c8B5nZKiiTAuJ0Ou7V2L4PkPKZhqSg3G0HsKcDKslUZzVvEH01V_oPszR4zwPFK0bLjRSbKVcDClF6I-OKTFLNsyaDYPZMIdsmMXqi_u9Hkt-JwGBNytwC23osRfwDo4YhkcqwblWS44Y0ur_6c2QbR6C34TZZyzla2lC3G8h_mnyH_5_AZ2v4zc</recordid><startdate>20210811</startdate><enddate>20210811</enddate><creator>Zubatyuk, Roman</creator><creator>Smith, Justin S.</creator><creator>Nebgen, Benjamin T.</creator><creator>Tretiak, Sergei</creator><creator>Isayev, Olexandr</creator><general>Nature Publishing Group UK</general><general>NATURE PORTFOLIO</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5310-3263</orcidid><orcidid>https://orcid.org/0000-0001-5547-3647</orcidid><orcidid>https://orcid.org/0000-0001-7581-8497</orcidid><orcidid>https://orcid.org/0000-0001-7314-7896</orcidid><orcidid>https://orcid.org/0000000175818497</orcidid><orcidid>https://orcid.org/0000000155473647</orcidid><orcidid>https://orcid.org/0000000153103263</orcidid><orcidid>https://orcid.org/0000000173147896</orcidid></search><sort><creationdate>20210811</creationdate><title>Teaching a neural network to attach and detach electrons from molecules</title><author>Zubatyuk, Roman ; Smith, Justin S. ; Nebgen, Benjamin T. ; Tretiak, Sergei ; Isayev, Olexandr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-e53a9509ad63fb9f5bf101d687d90424172bdc97289d2039f5b6dc6c891f6eee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>119/118</topic><topic>639/638/563/606</topic><topic>639/638/563/758</topic><topic>639/638/630</topic><topic>Algorithms</topic><topic>Anions</topic><topic>Cations</topic><topic>Chemical reactions</topic><topic>Computer simulation</topic><topic>Density functional theory</topic><topic>Electron affinity</topic><topic>Electronegativity</topic><topic>Functionals</topic><topic>Humanities and Social Sciences</topic><topic>Ionization</topic><topic>Ionization potentials</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Material Science</topic><topic>MATERIALS SCIENCE</topic><topic>multidisciplinary</topic><topic>Multidisciplinary Sciences</topic><topic>Neural networks</topic><topic>Organic chemistry</topic><topic>Quantum mechanics</topic><topic>Regioselectivity</topic><topic>Science</topic><topic>Science & Technology</topic><topic>Science & Technology - Other Topics</topic><topic>Science (multidisciplinary)</topic><topic>Substitution reactions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zubatyuk, Roman</creatorcontrib><creatorcontrib>Smith, Justin S.</creatorcontrib><creatorcontrib>Nebgen, Benjamin T.</creatorcontrib><creatorcontrib>Tretiak, Sergei</creatorcontrib><creatorcontrib>Isayev, Olexandr</creatorcontrib><creatorcontrib>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>Proquest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zubatyuk, Roman</au><au>Smith, Justin S.</au><au>Nebgen, Benjamin T.</au><au>Tretiak, Sergei</au><au>Isayev, Olexandr</au><aucorp>Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Teaching a neural network to attach and detach electrons from molecules</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><stitle>NAT COMMUN</stitle><addtitle>Nat Commun</addtitle><date>2021-08-11</date><risdate>2021</risdate><volume>12</volume><issue>1</issue><spage>4870</spage><epage>11</epage><pages>4870-11</pages><artnum>4870</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Interatomic potentials derived with Machine Learning algorithms such as Deep-Neural Networks (DNNs), achieve the accuracy of high-fidelity quantum mechanical (QM) methods in areas traditionally dominated by empirical force fields and allow performing massive simulations. Most DNN potentials were parametrized for neutral molecules or closed-shell ions due to architectural limitations. In this work, we propose an improved machine learning framework for simulating open-shell anions and cations. We introduce the AIMNet-NSE (Neural Spin Equilibration) architecture, which can predict molecular energies for an arbitrary combination of molecular charge and spin multiplicity with errors of about 2–3 kcal/mol and spin-charges with error errors ~0.01e for small and medium-sized organic molecules, compared to the reference QM simulations. The AIMNet-NSE model allows to fully bypass QM calculations and derive the ionization potential, electron affinity, and conceptual Density Functional Theory quantities like electronegativity, hardness, and condensed Fukui functions. We show that these descriptors, along with learned atomic representations, could be used to model chemical reactivity through an example of regioselectivity in electrophilic aromatic substitution reactions.
Quantum mechanical calculations of molecular ionized states are computationally quite expensive. This work reports a successful extension of a previous deep-neural networks approach towards transferable neural-network models for predicting multiple properties of open shell anions and cations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34381051</pmid><doi>10.1038/s41467-021-24904-0</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5310-3263</orcidid><orcidid>https://orcid.org/0000-0001-5547-3647</orcidid><orcidid>https://orcid.org/0000-0001-7581-8497</orcidid><orcidid>https://orcid.org/0000-0001-7314-7896</orcidid><orcidid>https://orcid.org/0000000175818497</orcidid><orcidid>https://orcid.org/0000000155473647</orcidid><orcidid>https://orcid.org/0000000153103263</orcidid><orcidid>https://orcid.org/0000000173147896</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2021-08, Vol.12 (1), p.4870-11, Article 4870 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_proquest_journals_2560157349 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Nature Free; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central; Alma/SFX Local Collection; Springer Nature OA/Free Journals |
subjects | 119/118 639/638/563/606 639/638/563/758 639/638/630 Algorithms Anions Cations Chemical reactions Computer simulation Density functional theory Electron affinity Electronegativity Functionals Humanities and Social Sciences Ionization Ionization potentials Learning algorithms Machine learning Material Science MATERIALS SCIENCE multidisciplinary Multidisciplinary Sciences Neural networks Organic chemistry Quantum mechanics Regioselectivity Science Science & Technology Science & Technology - Other Topics Science (multidisciplinary) Substitution reactions |
title | Teaching a neural network to attach and detach electrons from molecules |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T17%3A14%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_webof&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Teaching%20a%20neural%20network%20to%20attach%20and%20detach%20electrons%20from%20molecules&rft.jtitle=Nature%20communications&rft.au=Zubatyuk,%20Roman&rft.aucorp=Los%20Alamos%20National%20Laboratory%20(LANL),%20Los%20Alamos,%20NM%20(United%20States)&rft.date=2021-08-11&rft.volume=12&rft.issue=1&rft.spage=4870&rft.epage=11&rft.pages=4870-11&rft.artnum=4870&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-021-24904-0&rft_dat=%3Cproquest_webof%3E2560832537%3C/proquest_webof%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560157349&rft_id=info:pmid/34381051&rft_doaj_id=oai_doaj_org_article_a292041c8fcb4567a97c14746760b48e&rfr_iscdi=true |