The evolution of Materials Acceleration Platforms: toward the laboratory of the future with AMANDA

The development of complex functional materials poses a multi-objective optimization problem in a large multi-dimensional parameter space. Solving it requires reproducible, user-independent laboratory work and intelligent preselection of experiments. However, experimental materials science is a fiel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2021-10, Vol.56 (29), p.16422-16446
Hauptverfasser: Wagner, Jerrit, Berger, Christian G., Du, Xiaoyan, Stubhan, Tobias, Hauch, Jens A., Brabec, Christoph J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16446
container_issue 29
container_start_page 16422
container_title Journal of materials science
container_volume 56
creator Wagner, Jerrit
Berger, Christian G.
Du, Xiaoyan
Stubhan, Tobias
Hauch, Jens A.
Brabec, Christoph J.
description The development of complex functional materials poses a multi-objective optimization problem in a large multi-dimensional parameter space. Solving it requires reproducible, user-independent laboratory work and intelligent preselection of experiments. However, experimental materials science is a field where manual routines are still predominant, although other domains like pharmacy or chemistry have long used robotics and automation. As the number of publications on Materials Acceleration Platforms (MAPs) increases steadily, we review selected systems and fit them into the stages of a general material development process to examine the evolution of MAPs. Subsequently, we present our approach to laboratory automation in materials science. We introduce AMANDA (Autonomous Materials and Device Application Platform  - www.amanda-platform.com ), a generic platform for distributed materials research comprising a self-developed software backbone and several MAPs. One of them, LineOne (L1), is specifically designed to produce and characterize solution-processed thin-film devices like organic solar cells (OSC). It is designed to perform precise closed-loop screenings of up to 272 device variations per day yet allows further upscaling. Each individual solar cell is fully characterized, and all process steps are comprehensively documented. We want to demonstrate the capabilities of AMANDA L1 with OSCs based on PM6:Y6 with 13.7% efficiency when processed in air. Further, we discuss challenges and opportunities of highly automated research platforms and elaborate on the future integration of additional techniques, methods and algorithms in order to advance to fully autonomous self-optimizing systems—a paradigm shift in functional materials development leading to the laboratory of the future.
doi_str_mv 10.1007/s10853-021-06281-7
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2560157289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A671783585</galeid><sourcerecordid>A671783585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-74f1d56be400d95c36b7a08e80ccde0785e58190d15f7a6b70fb533ef466ec003</originalsourceid><addsrcrecordid>eNp9kU1P3DAQhq2KSl22_QM9ReLUQ2Bsxx_bW0Q_QIK2aunZcpzxEpSNqe2U8u_xEiTEpfLB0szzjK15CXlP4ZgCqJNEQQteA6M1SKZprV6RFRWK140GfkBWAIzVrJH0DTlM6QYAhGJ0Rbqra6zwbxjnPISpCr66tBnjYMdUtc7hiNE-dn6MNvsQd-ljlcOdjX2ViznaLhQgxPu9uq_4Oc8Rq7shX1ftZfvtU_uWvPZlHL57utfk95fPV6dn9cX3r-en7UXtGi5zrRpPeyE7bAD6jXBcdsqCRg3O9QhKCxSabqCnwitbmuA7wTn6Rkp0AHxNjpa5tzH8mTFlcxPmOJUnDRMSyjaY3hTqeKG2dkQzTD7kaF05Pe4GFyb0Q6m3UlGluShLXZMPL4TCZPyXt3ZOyZz_-vmSZQvrYkgpoje3cdjZeG8omH1QZgnKlKDMY1BGFYkvUirwtMX4_O__WA_LDJSH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560157289</pqid></control><display><type>article</type><title>The evolution of Materials Acceleration Platforms: toward the laboratory of the future with AMANDA</title><source>SpringerLink Journals - AutoHoldings</source><creator>Wagner, Jerrit ; Berger, Christian G. ; Du, Xiaoyan ; Stubhan, Tobias ; Hauch, Jens A. ; Brabec, Christoph J.</creator><creatorcontrib>Wagner, Jerrit ; Berger, Christian G. ; Du, Xiaoyan ; Stubhan, Tobias ; Hauch, Jens A. ; Brabec, Christoph J.</creatorcontrib><description>The development of complex functional materials poses a multi-objective optimization problem in a large multi-dimensional parameter space. Solving it requires reproducible, user-independent laboratory work and intelligent preselection of experiments. However, experimental materials science is a field where manual routines are still predominant, although other domains like pharmacy or chemistry have long used robotics and automation. As the number of publications on Materials Acceleration Platforms (MAPs) increases steadily, we review selected systems and fit them into the stages of a general material development process to examine the evolution of MAPs. Subsequently, we present our approach to laboratory automation in materials science. We introduce AMANDA (Autonomous Materials and Device Application Platform  - www.amanda-platform.com ), a generic platform for distributed materials research comprising a self-developed software backbone and several MAPs. One of them, LineOne (L1), is specifically designed to produce and characterize solution-processed thin-film devices like organic solar cells (OSC). It is designed to perform precise closed-loop screenings of up to 272 device variations per day yet allows further upscaling. Each individual solar cell is fully characterized, and all process steps are comprehensively documented. We want to demonstrate the capabilities of AMANDA L1 with OSCs based on PM6:Y6 with 13.7% efficiency when processed in air. Further, we discuss challenges and opportunities of highly automated research platforms and elaborate on the future integration of additional techniques, methods and algorithms in order to advance to fully autonomous self-optimizing systems—a paradigm shift in functional materials development leading to the laboratory of the future.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06281-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Automation ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Computation &amp; Theory ; Crystallography and Scattering Methods ; Evolution ; Functional materials ; Laboratories ; Materials Science ; Multiple objective analysis ; Optimization ; Organic chemistry ; Photovoltaic cells ; Platforms ; Polymer Sciences ; Robotics ; Solar cells ; Solid Mechanics</subject><ispartof>Journal of materials science, 2021-10, Vol.56 (29), p.16422-16446</ispartof><rights>The Author(s) 2021</rights><rights>COPYRIGHT 2021 Springer</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-74f1d56be400d95c36b7a08e80ccde0785e58190d15f7a6b70fb533ef466ec003</citedby><cites>FETCH-LOGICAL-c436t-74f1d56be400d95c36b7a08e80ccde0785e58190d15f7a6b70fb533ef466ec003</cites><orcidid>0000-0003-0497-1886</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-021-06281-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-021-06281-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Wagner, Jerrit</creatorcontrib><creatorcontrib>Berger, Christian G.</creatorcontrib><creatorcontrib>Du, Xiaoyan</creatorcontrib><creatorcontrib>Stubhan, Tobias</creatorcontrib><creatorcontrib>Hauch, Jens A.</creatorcontrib><creatorcontrib>Brabec, Christoph J.</creatorcontrib><title>The evolution of Materials Acceleration Platforms: toward the laboratory of the future with AMANDA</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>The development of complex functional materials poses a multi-objective optimization problem in a large multi-dimensional parameter space. Solving it requires reproducible, user-independent laboratory work and intelligent preselection of experiments. However, experimental materials science is a field where manual routines are still predominant, although other domains like pharmacy or chemistry have long used robotics and automation. As the number of publications on Materials Acceleration Platforms (MAPs) increases steadily, we review selected systems and fit them into the stages of a general material development process to examine the evolution of MAPs. Subsequently, we present our approach to laboratory automation in materials science. We introduce AMANDA (Autonomous Materials and Device Application Platform  - www.amanda-platform.com ), a generic platform for distributed materials research comprising a self-developed software backbone and several MAPs. One of them, LineOne (L1), is specifically designed to produce and characterize solution-processed thin-film devices like organic solar cells (OSC). It is designed to perform precise closed-loop screenings of up to 272 device variations per day yet allows further upscaling. Each individual solar cell is fully characterized, and all process steps are comprehensively documented. We want to demonstrate the capabilities of AMANDA L1 with OSCs based on PM6:Y6 with 13.7% efficiency when processed in air. Further, we discuss challenges and opportunities of highly automated research platforms and elaborate on the future integration of additional techniques, methods and algorithms in order to advance to fully autonomous self-optimizing systems—a paradigm shift in functional materials development leading to the laboratory of the future.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Computation &amp; Theory</subject><subject>Crystallography and Scattering Methods</subject><subject>Evolution</subject><subject>Functional materials</subject><subject>Laboratories</subject><subject>Materials Science</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Photovoltaic cells</subject><subject>Platforms</subject><subject>Polymer Sciences</subject><subject>Robotics</subject><subject>Solar cells</subject><subject>Solid Mechanics</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1P3DAQhq2KSl22_QM9ReLUQ2Bsxx_bW0Q_QIK2aunZcpzxEpSNqe2U8u_xEiTEpfLB0szzjK15CXlP4ZgCqJNEQQteA6M1SKZprV6RFRWK140GfkBWAIzVrJH0DTlM6QYAhGJ0Rbqra6zwbxjnPISpCr66tBnjYMdUtc7hiNE-dn6MNvsQd-ljlcOdjX2ViznaLhQgxPu9uq_4Oc8Rq7shX1ftZfvtU_uWvPZlHL57utfk95fPV6dn9cX3r-en7UXtGi5zrRpPeyE7bAD6jXBcdsqCRg3O9QhKCxSabqCnwitbmuA7wTn6Rkp0AHxNjpa5tzH8mTFlcxPmOJUnDRMSyjaY3hTqeKG2dkQzTD7kaF05Pe4GFyb0Q6m3UlGluShLXZMPL4TCZPyXt3ZOyZz_-vmSZQvrYkgpoje3cdjZeG8omH1QZgnKlKDMY1BGFYkvUirwtMX4_O__WA_LDJSH</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Wagner, Jerrit</creator><creator>Berger, Christian G.</creator><creator>Du, Xiaoyan</creator><creator>Stubhan, Tobias</creator><creator>Hauch, Jens A.</creator><creator>Brabec, Christoph J.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-0497-1886</orcidid></search><sort><creationdate>20211001</creationdate><title>The evolution of Materials Acceleration Platforms: toward the laboratory of the future with AMANDA</title><author>Wagner, Jerrit ; Berger, Christian G. ; Du, Xiaoyan ; Stubhan, Tobias ; Hauch, Jens A. ; Brabec, Christoph J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-74f1d56be400d95c36b7a08e80ccde0785e58190d15f7a6b70fb533ef466ec003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Computation &amp; Theory</topic><topic>Crystallography and Scattering Methods</topic><topic>Evolution</topic><topic>Functional materials</topic><topic>Laboratories</topic><topic>Materials Science</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Photovoltaic cells</topic><topic>Platforms</topic><topic>Polymer Sciences</topic><topic>Robotics</topic><topic>Solar cells</topic><topic>Solid Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wagner, Jerrit</creatorcontrib><creatorcontrib>Berger, Christian G.</creatorcontrib><creatorcontrib>Du, Xiaoyan</creatorcontrib><creatorcontrib>Stubhan, Tobias</creatorcontrib><creatorcontrib>Hauch, Jens A.</creatorcontrib><creatorcontrib>Brabec, Christoph J.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wagner, Jerrit</au><au>Berger, Christian G.</au><au>Du, Xiaoyan</au><au>Stubhan, Tobias</au><au>Hauch, Jens A.</au><au>Brabec, Christoph J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The evolution of Materials Acceleration Platforms: toward the laboratory of the future with AMANDA</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>56</volume><issue>29</issue><spage>16422</spage><epage>16446</epage><pages>16422-16446</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>The development of complex functional materials poses a multi-objective optimization problem in a large multi-dimensional parameter space. Solving it requires reproducible, user-independent laboratory work and intelligent preselection of experiments. However, experimental materials science is a field where manual routines are still predominant, although other domains like pharmacy or chemistry have long used robotics and automation. As the number of publications on Materials Acceleration Platforms (MAPs) increases steadily, we review selected systems and fit them into the stages of a general material development process to examine the evolution of MAPs. Subsequently, we present our approach to laboratory automation in materials science. We introduce AMANDA (Autonomous Materials and Device Application Platform  - www.amanda-platform.com ), a generic platform for distributed materials research comprising a self-developed software backbone and several MAPs. One of them, LineOne (L1), is specifically designed to produce and characterize solution-processed thin-film devices like organic solar cells (OSC). It is designed to perform precise closed-loop screenings of up to 272 device variations per day yet allows further upscaling. Each individual solar cell is fully characterized, and all process steps are comprehensively documented. We want to demonstrate the capabilities of AMANDA L1 with OSCs based on PM6:Y6 with 13.7% efficiency when processed in air. Further, we discuss challenges and opportunities of highly automated research platforms and elaborate on the future integration of additional techniques, methods and algorithms in order to advance to fully autonomous self-optimizing systems—a paradigm shift in functional materials development leading to the laboratory of the future.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06281-7</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0003-0497-1886</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2021-10, Vol.56 (29), p.16422-16446
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2560157289
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Automation
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Computation & Theory
Crystallography and Scattering Methods
Evolution
Functional materials
Laboratories
Materials Science
Multiple objective analysis
Optimization
Organic chemistry
Photovoltaic cells
Platforms
Polymer Sciences
Robotics
Solar cells
Solid Mechanics
title The evolution of Materials Acceleration Platforms: toward the laboratory of the future with AMANDA
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T18%3A44%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20evolution%20of%20Materials%20Acceleration%20Platforms:%20toward%20the%20laboratory%20of%20the%20future%20with%20AMANDA&rft.jtitle=Journal%20of%20materials%20science&rft.au=Wagner,%20Jerrit&rft.date=2021-10-01&rft.volume=56&rft.issue=29&rft.spage=16422&rft.epage=16446&rft.pages=16422-16446&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06281-7&rft_dat=%3Cgale_proqu%3EA671783585%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560157289&rft_id=info:pmid/&rft_galeid=A671783585&rfr_iscdi=true