Multi-UAV Assisted Offloading Optimization: A Game Combined Reinforcement Learning Approach

Although unmanned aerial vehicles (UAVs) have attracted much attention by providing aerial relays to massive ground users (GUs) for tasks offloading, there still exist several issues, such as the unbalance of tasks size and trajectory optimization related to energy efficiency and obstacles avoidance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE communications letters 2021-08, Vol.25 (8), p.2629-2633
Hauptverfasser: Gao, Ang, Wang, Qi, Chen, Kaiyue, Liang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2633
container_issue 8
container_start_page 2629
container_title IEEE communications letters
container_volume 25
creator Gao, Ang
Wang, Qi
Chen, Kaiyue
Liang, Wei
description Although unmanned aerial vehicles (UAVs) have attracted much attention by providing aerial relays to massive ground users (GUs) for tasks offloading, there still exist several issues, such as the unbalance of tasks size and trajectory optimization related to energy efficiency and obstacles avoidance. The letter models the multi-UAV assisted offloading system as two separate problems optimized by a potential game combined reinforcement learning algorithm, i.e., potential game for service assignment, and deep deterministic policy gradient (DDPG) for trajectory planning. The former largely reduces the convergence time, and the latter can search the best action in a continuous domain. The numerical results show that the proposed approach has great advantages in minimizing offloading delay, enhancing energy efficiency and avoiding obstacles.
doi_str_mv 10.1109/LCOMM.2021.3078469
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2560134555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9426943</ieee_id><sourcerecordid>2560134555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-abe84e19878b415b244c25c239891ce2dfcb3d7b6fe5186306c86f3ff9bb2bfa3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CJxDrFz8RmF0VQkFJFQpQNC8t2bHDVPLDTBXw9Ka3YzMzinrnSAeAawQVCUNxVZb1aLTDEaEFgzmkmTsAMMcZTPI3T6YZcpHku-Dm4iHEDIeSYoRl4X-22o0_XxVtSxOjjaJukdm7bq8Z3H0k9jL71P2r0fXefFMlStTYp-1b7bgq-WN-5Phjb2m5MKqtCt4eKYQi9Mp-X4MypbbRXxz0H68eH1_Iprerlc1lUqcGCjanSllOLBM-5pohpTKnBzGAiuEDG4sYZTZpcZ84yxDMCM8MzR5wTWmPtFJmD28PfqfZrZ-MoN_0udFOlxCyDiFDG2JTCh5QJfYzBOjkE36rwLRGUe4nyT6LcS5RHiRN0c4C8tfYfEBRnghLyCzCRbjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560134555</pqid></control><display><type>article</type><title>Multi-UAV Assisted Offloading Optimization: A Game Combined Reinforcement Learning Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Ang ; Wang, Qi ; Chen, Kaiyue ; Liang, Wei</creator><creatorcontrib>Gao, Ang ; Wang, Qi ; Chen, Kaiyue ; Liang, Wei</creatorcontrib><description>Although unmanned aerial vehicles (UAVs) have attracted much attention by providing aerial relays to massive ground users (GUs) for tasks offloading, there still exist several issues, such as the unbalance of tasks size and trajectory optimization related to energy efficiency and obstacles avoidance. The letter models the multi-UAV assisted offloading system as two separate problems optimized by a potential game combined reinforcement learning algorithm, i.e., potential game for service assignment, and deep deterministic policy gradient (DDPG) for trajectory planning. The former largely reduces the convergence time, and the latter can search the best action in a continuous domain. The numerical results show that the proposed approach has great advantages in minimizing offloading delay, enhancing energy efficiency and avoiding obstacles.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2021.3078469</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Convergence ; DDPG ; Delays ; DRL ; Energy consumption ; Energy conversion efficiency ; Energy efficiency ; Games ; Machine learning ; Obstacle avoidance ; Offloading ; potential game ; Relays ; Task analysis ; Trajectory optimization ; Trajectory planning ; Unmanned aerial vehicles</subject><ispartof>IEEE communications letters, 2021-08, Vol.25 (8), p.2629-2633</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-abe84e19878b415b244c25c239891ce2dfcb3d7b6fe5186306c86f3ff9bb2bfa3</citedby><cites>FETCH-LOGICAL-c295t-abe84e19878b415b244c25c239891ce2dfcb3d7b6fe5186306c86f3ff9bb2bfa3</cites><orcidid>0000-0002-9211-734X ; 0000-0002-9145-6614 ; 0000-0002-3776-7016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9426943$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9426943$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Ang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Chen, Kaiyue</creatorcontrib><creatorcontrib>Liang, Wei</creatorcontrib><title>Multi-UAV Assisted Offloading Optimization: A Game Combined Reinforcement Learning Approach</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>Although unmanned aerial vehicles (UAVs) have attracted much attention by providing aerial relays to massive ground users (GUs) for tasks offloading, there still exist several issues, such as the unbalance of tasks size and trajectory optimization related to energy efficiency and obstacles avoidance. The letter models the multi-UAV assisted offloading system as two separate problems optimized by a potential game combined reinforcement learning algorithm, i.e., potential game for service assignment, and deep deterministic policy gradient (DDPG) for trajectory planning. The former largely reduces the convergence time, and the latter can search the best action in a continuous domain. The numerical results show that the proposed approach has great advantages in minimizing offloading delay, enhancing energy efficiency and avoiding obstacles.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>DDPG</subject><subject>Delays</subject><subject>DRL</subject><subject>Energy consumption</subject><subject>Energy conversion efficiency</subject><subject>Energy efficiency</subject><subject>Games</subject><subject>Machine learning</subject><subject>Obstacle avoidance</subject><subject>Offloading</subject><subject>potential game</subject><subject>Relays</subject><subject>Task analysis</subject><subject>Trajectory optimization</subject><subject>Trajectory planning</subject><subject>Unmanned aerial vehicles</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CJxDrFz8RmF0VQkFJFQpQNC8t2bHDVPLDTBXw9Ka3YzMzinrnSAeAawQVCUNxVZb1aLTDEaEFgzmkmTsAMMcZTPI3T6YZcpHku-Dm4iHEDIeSYoRl4X-22o0_XxVtSxOjjaJukdm7bq8Z3H0k9jL71P2r0fXefFMlStTYp-1b7bgq-WN-5Phjb2m5MKqtCt4eKYQi9Mp-X4MypbbRXxz0H68eH1_Iprerlc1lUqcGCjanSllOLBM-5pohpTKnBzGAiuEDG4sYZTZpcZ84yxDMCM8MzR5wTWmPtFJmD28PfqfZrZ-MoN_0udFOlxCyDiFDG2JTCh5QJfYzBOjkE36rwLRGUe4nyT6LcS5RHiRN0c4C8tfYfEBRnghLyCzCRbjI</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Gao, Ang</creator><creator>Wang, Qi</creator><creator>Chen, Kaiyue</creator><creator>Liang, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9211-734X</orcidid><orcidid>https://orcid.org/0000-0002-9145-6614</orcidid><orcidid>https://orcid.org/0000-0002-3776-7016</orcidid></search><sort><creationdate>20210801</creationdate><title>Multi-UAV Assisted Offloading Optimization: A Game Combined Reinforcement Learning Approach</title><author>Gao, Ang ; Wang, Qi ; Chen, Kaiyue ; Liang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-abe84e19878b415b244c25c239891ce2dfcb3d7b6fe5186306c86f3ff9bb2bfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>DDPG</topic><topic>Delays</topic><topic>DRL</topic><topic>Energy consumption</topic><topic>Energy conversion efficiency</topic><topic>Energy efficiency</topic><topic>Games</topic><topic>Machine learning</topic><topic>Obstacle avoidance</topic><topic>Offloading</topic><topic>potential game</topic><topic>Relays</topic><topic>Task analysis</topic><topic>Trajectory optimization</topic><topic>Trajectory planning</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Ang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Chen, Kaiyue</creatorcontrib><creatorcontrib>Liang, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Ang</au><au>Wang, Qi</au><au>Chen, Kaiyue</au><au>Liang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-UAV Assisted Offloading Optimization: A Game Combined Reinforcement Learning Approach</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>25</volume><issue>8</issue><spage>2629</spage><epage>2633</epage><pages>2629-2633</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Although unmanned aerial vehicles (UAVs) have attracted much attention by providing aerial relays to massive ground users (GUs) for tasks offloading, there still exist several issues, such as the unbalance of tasks size and trajectory optimization related to energy efficiency and obstacles avoidance. The letter models the multi-UAV assisted offloading system as two separate problems optimized by a potential game combined reinforcement learning algorithm, i.e., potential game for service assignment, and deep deterministic policy gradient (DDPG) for trajectory planning. The former largely reduces the convergence time, and the latter can search the best action in a continuous domain. The numerical results show that the proposed approach has great advantages in minimizing offloading delay, enhancing energy efficiency and avoiding obstacles.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2021.3078469</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9211-734X</orcidid><orcidid>https://orcid.org/0000-0002-9145-6614</orcidid><orcidid>https://orcid.org/0000-0002-3776-7016</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-7798
ispartof IEEE communications letters, 2021-08, Vol.25 (8), p.2629-2633
issn 1089-7798
1558-2558
language eng
recordid cdi_proquest_journals_2560134555
source IEEE Electronic Library (IEL)
subjects Algorithms
Convergence
DDPG
Delays
DRL
Energy consumption
Energy conversion efficiency
Energy efficiency
Games
Machine learning
Obstacle avoidance
Offloading
potential game
Relays
Task analysis
Trajectory optimization
Trajectory planning
Unmanned aerial vehicles
title Multi-UAV Assisted Offloading Optimization: A Game Combined Reinforcement Learning Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-UAV%20Assisted%20Offloading%20Optimization:%20A%20Game%20Combined%20Reinforcement%20Learning%20Approach&rft.jtitle=IEEE%20communications%20letters&rft.au=Gao,%20Ang&rft.date=2021-08-01&rft.volume=25&rft.issue=8&rft.spage=2629&rft.epage=2633&rft.pages=2629-2633&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2021.3078469&rft_dat=%3Cproquest_RIE%3E2560134555%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560134555&rft_id=info:pmid/&rft_ieee_id=9426943&rfr_iscdi=true