Multi-UAV Assisted Offloading Optimization: A Game Combined Reinforcement Learning Approach
Although unmanned aerial vehicles (UAVs) have attracted much attention by providing aerial relays to massive ground users (GUs) for tasks offloading, there still exist several issues, such as the unbalance of tasks size and trajectory optimization related to energy efficiency and obstacles avoidance...
Gespeichert in:
Veröffentlicht in: | IEEE communications letters 2021-08, Vol.25 (8), p.2629-2633 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2633 |
---|---|
container_issue | 8 |
container_start_page | 2629 |
container_title | IEEE communications letters |
container_volume | 25 |
creator | Gao, Ang Wang, Qi Chen, Kaiyue Liang, Wei |
description | Although unmanned aerial vehicles (UAVs) have attracted much attention by providing aerial relays to massive ground users (GUs) for tasks offloading, there still exist several issues, such as the unbalance of tasks size and trajectory optimization related to energy efficiency and obstacles avoidance. The letter models the multi-UAV assisted offloading system as two separate problems optimized by a potential game combined reinforcement learning algorithm, i.e., potential game for service assignment, and deep deterministic policy gradient (DDPG) for trajectory planning. The former largely reduces the convergence time, and the latter can search the best action in a continuous domain. The numerical results show that the proposed approach has great advantages in minimizing offloading delay, enhancing energy efficiency and avoiding obstacles. |
doi_str_mv | 10.1109/LCOMM.2021.3078469 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2560134555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9426943</ieee_id><sourcerecordid>2560134555</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-abe84e19878b415b244c25c239891ce2dfcb3d7b6fe5186306c86f3ff9bb2bfa3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CJxDrFz8RmF0VQkFJFQpQNC8t2bHDVPLDTBXw9Ka3YzMzinrnSAeAawQVCUNxVZb1aLTDEaEFgzmkmTsAMMcZTPI3T6YZcpHku-Dm4iHEDIeSYoRl4X-22o0_XxVtSxOjjaJukdm7bq8Z3H0k9jL71P2r0fXefFMlStTYp-1b7bgq-WN-5Phjb2m5MKqtCt4eKYQi9Mp-X4MypbbRXxz0H68eH1_Iprerlc1lUqcGCjanSllOLBM-5pohpTKnBzGAiuEDG4sYZTZpcZ84yxDMCM8MzR5wTWmPtFJmD28PfqfZrZ-MoN_0udFOlxCyDiFDG2JTCh5QJfYzBOjkE36rwLRGUe4nyT6LcS5RHiRN0c4C8tfYfEBRnghLyCzCRbjI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560134555</pqid></control><display><type>article</type><title>Multi-UAV Assisted Offloading Optimization: A Game Combined Reinforcement Learning Approach</title><source>IEEE Electronic Library (IEL)</source><creator>Gao, Ang ; Wang, Qi ; Chen, Kaiyue ; Liang, Wei</creator><creatorcontrib>Gao, Ang ; Wang, Qi ; Chen, Kaiyue ; Liang, Wei</creatorcontrib><description>Although unmanned aerial vehicles (UAVs) have attracted much attention by providing aerial relays to massive ground users (GUs) for tasks offloading, there still exist several issues, such as the unbalance of tasks size and trajectory optimization related to energy efficiency and obstacles avoidance. The letter models the multi-UAV assisted offloading system as two separate problems optimized by a potential game combined reinforcement learning algorithm, i.e., potential game for service assignment, and deep deterministic policy gradient (DDPG) for trajectory planning. The former largely reduces the convergence time, and the latter can search the best action in a continuous domain. The numerical results show that the proposed approach has great advantages in minimizing offloading delay, enhancing energy efficiency and avoiding obstacles.</description><identifier>ISSN: 1089-7798</identifier><identifier>EISSN: 1558-2558</identifier><identifier>DOI: 10.1109/LCOMM.2021.3078469</identifier><identifier>CODEN: ICLEF6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Convergence ; DDPG ; Delays ; DRL ; Energy consumption ; Energy conversion efficiency ; Energy efficiency ; Games ; Machine learning ; Obstacle avoidance ; Offloading ; potential game ; Relays ; Task analysis ; Trajectory optimization ; Trajectory planning ; Unmanned aerial vehicles</subject><ispartof>IEEE communications letters, 2021-08, Vol.25 (8), p.2629-2633</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-abe84e19878b415b244c25c239891ce2dfcb3d7b6fe5186306c86f3ff9bb2bfa3</citedby><cites>FETCH-LOGICAL-c295t-abe84e19878b415b244c25c239891ce2dfcb3d7b6fe5186306c86f3ff9bb2bfa3</cites><orcidid>0000-0002-9211-734X ; 0000-0002-9145-6614 ; 0000-0002-3776-7016</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9426943$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9426943$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Gao, Ang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Chen, Kaiyue</creatorcontrib><creatorcontrib>Liang, Wei</creatorcontrib><title>Multi-UAV Assisted Offloading Optimization: A Game Combined Reinforcement Learning Approach</title><title>IEEE communications letters</title><addtitle>LCOMM</addtitle><description>Although unmanned aerial vehicles (UAVs) have attracted much attention by providing aerial relays to massive ground users (GUs) for tasks offloading, there still exist several issues, such as the unbalance of tasks size and trajectory optimization related to energy efficiency and obstacles avoidance. The letter models the multi-UAV assisted offloading system as two separate problems optimized by a potential game combined reinforcement learning algorithm, i.e., potential game for service assignment, and deep deterministic policy gradient (DDPG) for trajectory planning. The former largely reduces the convergence time, and the latter can search the best action in a continuous domain. The numerical results show that the proposed approach has great advantages in minimizing offloading delay, enhancing energy efficiency and avoiding obstacles.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>DDPG</subject><subject>Delays</subject><subject>DRL</subject><subject>Energy consumption</subject><subject>Energy conversion efficiency</subject><subject>Energy efficiency</subject><subject>Games</subject><subject>Machine learning</subject><subject>Obstacle avoidance</subject><subject>Offloading</subject><subject>potential game</subject><subject>Relays</subject><subject>Task analysis</subject><subject>Trajectory optimization</subject><subject>Trajectory planning</subject><subject>Unmanned aerial vehicles</subject><issn>1089-7798</issn><issn>1558-2558</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CJxDrFz8RmF0VQkFJFQpQNC8t2bHDVPLDTBXw9Ka3YzMzinrnSAeAawQVCUNxVZb1aLTDEaEFgzmkmTsAMMcZTPI3T6YZcpHku-Dm4iHEDIeSYoRl4X-22o0_XxVtSxOjjaJukdm7bq8Z3H0k9jL71P2r0fXefFMlStTYp-1b7bgq-WN-5Phjb2m5MKqtCt4eKYQi9Mp-X4MypbbRXxz0H68eH1_Iprerlc1lUqcGCjanSllOLBM-5pohpTKnBzGAiuEDG4sYZTZpcZ84yxDMCM8MzR5wTWmPtFJmD28PfqfZrZ-MoN_0udFOlxCyDiFDG2JTCh5QJfYzBOjkE36rwLRGUe4nyT6LcS5RHiRN0c4C8tfYfEBRnghLyCzCRbjI</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Gao, Ang</creator><creator>Wang, Qi</creator><creator>Chen, Kaiyue</creator><creator>Liang, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9211-734X</orcidid><orcidid>https://orcid.org/0000-0002-9145-6614</orcidid><orcidid>https://orcid.org/0000-0002-3776-7016</orcidid></search><sort><creationdate>20210801</creationdate><title>Multi-UAV Assisted Offloading Optimization: A Game Combined Reinforcement Learning Approach</title><author>Gao, Ang ; Wang, Qi ; Chen, Kaiyue ; Liang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-abe84e19878b415b244c25c239891ce2dfcb3d7b6fe5186306c86f3ff9bb2bfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>DDPG</topic><topic>Delays</topic><topic>DRL</topic><topic>Energy consumption</topic><topic>Energy conversion efficiency</topic><topic>Energy efficiency</topic><topic>Games</topic><topic>Machine learning</topic><topic>Obstacle avoidance</topic><topic>Offloading</topic><topic>potential game</topic><topic>Relays</topic><topic>Task analysis</topic><topic>Trajectory optimization</topic><topic>Trajectory planning</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Ang</creatorcontrib><creatorcontrib>Wang, Qi</creatorcontrib><creatorcontrib>Chen, Kaiyue</creatorcontrib><creatorcontrib>Liang, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Gao, Ang</au><au>Wang, Qi</au><au>Chen, Kaiyue</au><au>Liang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-UAV Assisted Offloading Optimization: A Game Combined Reinforcement Learning Approach</atitle><jtitle>IEEE communications letters</jtitle><stitle>LCOMM</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>25</volume><issue>8</issue><spage>2629</spage><epage>2633</epage><pages>2629-2633</pages><issn>1089-7798</issn><eissn>1558-2558</eissn><coden>ICLEF6</coden><abstract>Although unmanned aerial vehicles (UAVs) have attracted much attention by providing aerial relays to massive ground users (GUs) for tasks offloading, there still exist several issues, such as the unbalance of tasks size and trajectory optimization related to energy efficiency and obstacles avoidance. The letter models the multi-UAV assisted offloading system as two separate problems optimized by a potential game combined reinforcement learning algorithm, i.e., potential game for service assignment, and deep deterministic policy gradient (DDPG) for trajectory planning. The former largely reduces the convergence time, and the latter can search the best action in a continuous domain. The numerical results show that the proposed approach has great advantages in minimizing offloading delay, enhancing energy efficiency and avoiding obstacles.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LCOMM.2021.3078469</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-9211-734X</orcidid><orcidid>https://orcid.org/0000-0002-9145-6614</orcidid><orcidid>https://orcid.org/0000-0002-3776-7016</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-7798 |
ispartof | IEEE communications letters, 2021-08, Vol.25 (8), p.2629-2633 |
issn | 1089-7798 1558-2558 |
language | eng |
recordid | cdi_proquest_journals_2560134555 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Convergence DDPG Delays DRL Energy consumption Energy conversion efficiency Energy efficiency Games Machine learning Obstacle avoidance Offloading potential game Relays Task analysis Trajectory optimization Trajectory planning Unmanned aerial vehicles |
title | Multi-UAV Assisted Offloading Optimization: A Game Combined Reinforcement Learning Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A37%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-UAV%20Assisted%20Offloading%20Optimization:%20A%20Game%20Combined%20Reinforcement%20Learning%20Approach&rft.jtitle=IEEE%20communications%20letters&rft.au=Gao,%20Ang&rft.date=2021-08-01&rft.volume=25&rft.issue=8&rft.spage=2629&rft.epage=2633&rft.pages=2629-2633&rft.issn=1089-7798&rft.eissn=1558-2558&rft.coden=ICLEF6&rft_id=info:doi/10.1109/LCOMM.2021.3078469&rft_dat=%3Cproquest_RIE%3E2560134555%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560134555&rft_id=info:pmid/&rft_ieee_id=9426943&rfr_iscdi=true |