Blind Federated Edge Learning

We study federated edge learning (FEEL), where wireless edge devices, each with its own dataset, learn a global model collaboratively with the help of a wireless access point acting as the parameter server (PS). At each iteration, wireless devices perform local updates using their local data and the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on wireless communications 2021-08, Vol.20 (8), p.5129-5143
Hauptverfasser: Amiri, Mohammad Mohammadi, Duman, Tolga M., Gunduz, Deniz, Kulkarni, Sanjeev R., Poor, H. Vincent Poor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5143
container_issue 8
container_start_page 5129
container_title IEEE transactions on wireless communications
container_volume 20
creator Amiri, Mohammad Mohammadi
Duman, Tolga M.
Gunduz, Deniz
Kulkarni, Sanjeev R.
Poor, H. Vincent Poor
description We study federated edge learning (FEEL), where wireless edge devices, each with its own dataset, learn a global model collaboratively with the help of a wireless access point acting as the parameter server (PS). At each iteration, wireless devices perform local updates using their local data and the most recent global model received from the PS, and send their local updates to the PS over a wireless fading multiple access channel (MAC). The PS then updates the global model according to the signal received over the wireless MAC, and shares it with the devices. Motivated by the additive nature of the wireless MAC, we propose an analog 'over-the-air' aggregation scheme, in which the devices transmit their local updates in an uncoded fashion. However, unlike recent literature on over-the-air FEEL, here we assume that the devices do not have channel state information (CSI), while the PS has imperfect CSI. On the other hand, the PS is equipped with multiple antennas to alleviate the destructive effect of the channel, exacerbated due to the lack of perfect CSI. We design a receive beamforming scheme at the PS, and show that it can compensate for the lack of perfect CSI when the PS has a sufficient number of antennas. We also derive the convergence rate of the proposed algorithm highlighting the impact of the lack of perfect CSI, as well as the number of PS antennas. Both the experimental results and the convergence analysis illustrate the performance improvement of the proposed algorithm with the number of PS antennas, where the wireless fading MAC becomes deterministic despite the lack of perfect CSI when the PS has a sufficiently large number of antennas.
doi_str_mv 10.1109/TWC.2021.3065920
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2560132762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9382114</ieee_id><sourcerecordid>2560132762</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-7ff99ef589e015b4de6c2a9b2fd5a24f289c7088ce91278b6f201e77b31adfaf3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQRoMoWKt3QYSC560zk002OWppVVjwUvEYsptJ2VK3Ndse_Pfu0tLTzOF9Mx9PiHuEKSLY5-X3bEpAOJWglSW4ECNUymREubkcdqkzpEJfi5uuWwNgoZUaicfXTdOGyYIDJ7_nMJmHFU9K9qlt2tWtuIp-0_HdaY7F12K-nL1n5efbx-ylzGop5T4rYrSWozKWAVWVB9Y1eVtRDMpTHsnYugBjarZ9BVPpSIBcFJVEH6KPciyejnd3aft74G7v1ttDavuXjpQGlH1x6ik4UnXadl3i6Hap-fHpzyG4QYLrJbhBgjtJ6CMPx0jDzGfcSkOIufwHGLhV2g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560132762</pqid></control><display><type>article</type><title>Blind Federated Edge Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Amiri, Mohammad Mohammadi ; Duman, Tolga M. ; Gunduz, Deniz ; Kulkarni, Sanjeev R. ; Poor, H. Vincent Poor</creator><creatorcontrib>Amiri, Mohammad Mohammadi ; Duman, Tolga M. ; Gunduz, Deniz ; Kulkarni, Sanjeev R. ; Poor, H. Vincent Poor</creatorcontrib><description>We study federated edge learning (FEEL), where wireless edge devices, each with its own dataset, learn a global model collaboratively with the help of a wireless access point acting as the parameter server (PS). At each iteration, wireless devices perform local updates using their local data and the most recent global model received from the PS, and send their local updates to the PS over a wireless fading multiple access channel (MAC). The PS then updates the global model according to the signal received over the wireless MAC, and shares it with the devices. Motivated by the additive nature of the wireless MAC, we propose an analog 'over-the-air' aggregation scheme, in which the devices transmit their local updates in an uncoded fashion. However, unlike recent literature on over-the-air FEEL, here we assume that the devices do not have channel state information (CSI), while the PS has imperfect CSI. On the other hand, the PS is equipped with multiple antennas to alleviate the destructive effect of the channel, exacerbated due to the lack of perfect CSI. We design a receive beamforming scheme at the PS, and show that it can compensate for the lack of perfect CSI when the PS has a sufficient number of antennas. We also derive the convergence rate of the proposed algorithm highlighting the impact of the lack of perfect CSI, as well as the number of PS antennas. Both the experimental results and the convergence analysis illustrate the performance improvement of the proposed algorithm with the number of PS antennas, where the wireless fading MAC becomes deterministic despite the lack of perfect CSI when the PS has a sufficiently large number of antennas.</description><identifier>ISSN: 1536-1276</identifier><identifier>EISSN: 1558-2248</identifier><identifier>DOI: 10.1109/TWC.2021.3065920</identifier><identifier>CODEN: ITWCAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Antennas ; Beamforming ; blind transmitters ; Convergence ; Data models ; Devices ; Fading ; Fading channels ; fading multiple access channel ; Federated edge learning ; Iterative methods ; Learning ; multi-antenna parameter server ; OFDM ; Performance evaluation ; Wireless communication</subject><ispartof>IEEE transactions on wireless communications, 2021-08, Vol.20 (8), p.5129-5143</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-7ff99ef589e015b4de6c2a9b2fd5a24f289c7088ce91278b6f201e77b31adfaf3</citedby><cites>FETCH-LOGICAL-c333t-7ff99ef589e015b4de6c2a9b2fd5a24f289c7088ce91278b6f201e77b31adfaf3</cites><orcidid>0000-0002-7725-395X ; 0000-0002-5308-5250 ; 0000-0002-7343-6628 ; 0000-0002-5187-8660 ; 0000-0002-2062-131X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9382114$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9382114$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Amiri, Mohammad Mohammadi</creatorcontrib><creatorcontrib>Duman, Tolga M.</creatorcontrib><creatorcontrib>Gunduz, Deniz</creatorcontrib><creatorcontrib>Kulkarni, Sanjeev R.</creatorcontrib><creatorcontrib>Poor, H. Vincent Poor</creatorcontrib><title>Blind Federated Edge Learning</title><title>IEEE transactions on wireless communications</title><addtitle>TWC</addtitle><description>We study federated edge learning (FEEL), where wireless edge devices, each with its own dataset, learn a global model collaboratively with the help of a wireless access point acting as the parameter server (PS). At each iteration, wireless devices perform local updates using their local data and the most recent global model received from the PS, and send their local updates to the PS over a wireless fading multiple access channel (MAC). The PS then updates the global model according to the signal received over the wireless MAC, and shares it with the devices. Motivated by the additive nature of the wireless MAC, we propose an analog 'over-the-air' aggregation scheme, in which the devices transmit their local updates in an uncoded fashion. However, unlike recent literature on over-the-air FEEL, here we assume that the devices do not have channel state information (CSI), while the PS has imperfect CSI. On the other hand, the PS is equipped with multiple antennas to alleviate the destructive effect of the channel, exacerbated due to the lack of perfect CSI. We design a receive beamforming scheme at the PS, and show that it can compensate for the lack of perfect CSI when the PS has a sufficient number of antennas. We also derive the convergence rate of the proposed algorithm highlighting the impact of the lack of perfect CSI, as well as the number of PS antennas. Both the experimental results and the convergence analysis illustrate the performance improvement of the proposed algorithm with the number of PS antennas, where the wireless fading MAC becomes deterministic despite the lack of perfect CSI when the PS has a sufficiently large number of antennas.</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Beamforming</subject><subject>blind transmitters</subject><subject>Convergence</subject><subject>Data models</subject><subject>Devices</subject><subject>Fading</subject><subject>Fading channels</subject><subject>fading multiple access channel</subject><subject>Federated edge learning</subject><subject>Iterative methods</subject><subject>Learning</subject><subject>multi-antenna parameter server</subject><subject>OFDM</subject><subject>Performance evaluation</subject><subject>Wireless communication</subject><issn>1536-1276</issn><issn>1558-2248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQRoMoWKt3QYSC560zk002OWppVVjwUvEYsptJ2VK3Ndse_Pfu0tLTzOF9Mx9PiHuEKSLY5-X3bEpAOJWglSW4ECNUymREubkcdqkzpEJfi5uuWwNgoZUaicfXTdOGyYIDJ7_nMJmHFU9K9qlt2tWtuIp-0_HdaY7F12K-nL1n5efbx-ylzGop5T4rYrSWozKWAVWVB9Y1eVtRDMpTHsnYugBjarZ9BVPpSIBcFJVEH6KPciyejnd3aft74G7v1ttDavuXjpQGlH1x6ik4UnXadl3i6Hap-fHpzyG4QYLrJbhBgjtJ6CMPx0jDzGfcSkOIufwHGLhV2g</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Amiri, Mohammad Mohammadi</creator><creator>Duman, Tolga M.</creator><creator>Gunduz, Deniz</creator><creator>Kulkarni, Sanjeev R.</creator><creator>Poor, H. Vincent Poor</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7725-395X</orcidid><orcidid>https://orcid.org/0000-0002-5308-5250</orcidid><orcidid>https://orcid.org/0000-0002-7343-6628</orcidid><orcidid>https://orcid.org/0000-0002-5187-8660</orcidid><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid></search><sort><creationdate>202108</creationdate><title>Blind Federated Edge Learning</title><author>Amiri, Mohammad Mohammadi ; Duman, Tolga M. ; Gunduz, Deniz ; Kulkarni, Sanjeev R. ; Poor, H. Vincent Poor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-7ff99ef589e015b4de6c2a9b2fd5a24f289c7088ce91278b6f201e77b31adfaf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Beamforming</topic><topic>blind transmitters</topic><topic>Convergence</topic><topic>Data models</topic><topic>Devices</topic><topic>Fading</topic><topic>Fading channels</topic><topic>fading multiple access channel</topic><topic>Federated edge learning</topic><topic>Iterative methods</topic><topic>Learning</topic><topic>multi-antenna parameter server</topic><topic>OFDM</topic><topic>Performance evaluation</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Amiri, Mohammad Mohammadi</creatorcontrib><creatorcontrib>Duman, Tolga M.</creatorcontrib><creatorcontrib>Gunduz, Deniz</creatorcontrib><creatorcontrib>Kulkarni, Sanjeev R.</creatorcontrib><creatorcontrib>Poor, H. Vincent Poor</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Amiri, Mohammad Mohammadi</au><au>Duman, Tolga M.</au><au>Gunduz, Deniz</au><au>Kulkarni, Sanjeev R.</au><au>Poor, H. Vincent Poor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Blind Federated Edge Learning</atitle><jtitle>IEEE transactions on wireless communications</jtitle><stitle>TWC</stitle><date>2021-08</date><risdate>2021</risdate><volume>20</volume><issue>8</issue><spage>5129</spage><epage>5143</epage><pages>5129-5143</pages><issn>1536-1276</issn><eissn>1558-2248</eissn><coden>ITWCAX</coden><abstract>We study federated edge learning (FEEL), where wireless edge devices, each with its own dataset, learn a global model collaboratively with the help of a wireless access point acting as the parameter server (PS). At each iteration, wireless devices perform local updates using their local data and the most recent global model received from the PS, and send their local updates to the PS over a wireless fading multiple access channel (MAC). The PS then updates the global model according to the signal received over the wireless MAC, and shares it with the devices. Motivated by the additive nature of the wireless MAC, we propose an analog 'over-the-air' aggregation scheme, in which the devices transmit their local updates in an uncoded fashion. However, unlike recent literature on over-the-air FEEL, here we assume that the devices do not have channel state information (CSI), while the PS has imperfect CSI. On the other hand, the PS is equipped with multiple antennas to alleviate the destructive effect of the channel, exacerbated due to the lack of perfect CSI. We design a receive beamforming scheme at the PS, and show that it can compensate for the lack of perfect CSI when the PS has a sufficient number of antennas. We also derive the convergence rate of the proposed algorithm highlighting the impact of the lack of perfect CSI, as well as the number of PS antennas. Both the experimental results and the convergence analysis illustrate the performance improvement of the proposed algorithm with the number of PS antennas, where the wireless fading MAC becomes deterministic despite the lack of perfect CSI when the PS has a sufficiently large number of antennas.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TWC.2021.3065920</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7725-395X</orcidid><orcidid>https://orcid.org/0000-0002-5308-5250</orcidid><orcidid>https://orcid.org/0000-0002-7343-6628</orcidid><orcidid>https://orcid.org/0000-0002-5187-8660</orcidid><orcidid>https://orcid.org/0000-0002-2062-131X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1276
ispartof IEEE transactions on wireless communications, 2021-08, Vol.20 (8), p.5129-5143
issn 1536-1276
1558-2248
language eng
recordid cdi_proquest_journals_2560132762
source IEEE Electronic Library (IEL)
subjects Algorithms
Antennas
Beamforming
blind transmitters
Convergence
Data models
Devices
Fading
Fading channels
fading multiple access channel
Federated edge learning
Iterative methods
Learning
multi-antenna parameter server
OFDM
Performance evaluation
Wireless communication
title Blind Federated Edge Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T20%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Blind%20Federated%20Edge%20Learning&rft.jtitle=IEEE%20transactions%20on%20wireless%20communications&rft.au=Amiri,%20Mohammad%20Mohammadi&rft.date=2021-08&rft.volume=20&rft.issue=8&rft.spage=5129&rft.epage=5143&rft.pages=5129-5143&rft.issn=1536-1276&rft.eissn=1558-2248&rft.coden=ITWCAX&rft_id=info:doi/10.1109/TWC.2021.3065920&rft_dat=%3Cproquest_RIE%3E2560132762%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560132762&rft_id=info:pmid/&rft_ieee_id=9382114&rfr_iscdi=true