High performance polylactic acid/thermoplastic polyurethane blends with in‐situ fibrillated morphology

As an environment‐friendly polyester, polylactic acid (PLA) shows great potential market value. While it still faces some obstacles in large‐scale practical application due to its brittleness. In this work, a novel strategy to improve the toughness of polylactic acid is developed. By adjusting proce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2021-10, Vol.138 (39), p.n/a
Hauptverfasser: Su, Xiaolong, Jia, Shikui, Cao, Le, Yu, Demei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 39
container_start_page
container_title Journal of applied polymer science
container_volume 138
creator Su, Xiaolong
Jia, Shikui
Cao, Le
Yu, Demei
description As an environment‐friendly polyester, polylactic acid (PLA) shows great potential market value. While it still faces some obstacles in large‐scale practical application due to its brittleness. In this work, a novel strategy to improve the toughness of polylactic acid is developed. By adjusting processing temperature during the melt‐blending process, thermoplastic polyurethane/poly (D‐lactic) acid/poly (L‐lactic) acid (TPU/PDLA/PLLA) ternary blends with different morphology are obtained. The experimental results show that the TPU in ternary blends formed a fibrillated micro‐morphology, and the interfacial compatibility between the components is improved when the processing temperature is adjusted to 200°C. Under the synergistic action of in‐situ fibrillated TPU and stereocomplex (SC) crystals, the toughness of the ternary blends is improved significantly without sacrificing its own tensile strength. The maximum value of tensile strength, elongation at break, and fracture work of ternary blends are 61.9 MPa, 23.5%, and 1038.9 kJ/m3, respectively. In addition, the melt strength of ternary blends was significantly improved, which is a benefit to their processing application.
doi_str_mv 10.1002/app.51014
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560100085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560100085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2974-d1116960416159a1adef40b828fbdd472b204b02a93f05fadf1f9a4752e8f6393</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EEuUy8AaWmBjS2q5z8VhVQJEq0QFmy4ntxpUTGztRlY1H4Bl5ElLCynSk83__OdIHwB1Gc4wQWQjv5ylGmJ6BGUYsT2hGinMwGzOcFIyll-AqxgNCGKcom4F6Y_Y19CpoFxrRVgp6Zwcrqs5UUFRGLrpahcZ5K-JpdUr7oLpatAqWVrUywqPpamja78-vaLoealMGY63olISNC7521u2HG3ChhY3q9m9eg_enx7f1Jtm-Pr-sV9ukIiynicQYZyxDFGc4ZQILqTRFZUEKXUpJc1ISREtEBFtqlGohNdZM0DwlqtDZki2vwf101wf30avY8YPrQzu-5CTN0CgJFelIPUxUFVyMQWnug2lEGDhG_CSSjyL5r8iRXUzs0Vg1_A_y1W43NX4AO_t3aA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560100085</pqid></control><display><type>article</type><title>High performance polylactic acid/thermoplastic polyurethane blends with in‐situ fibrillated morphology</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Su, Xiaolong ; Jia, Shikui ; Cao, Le ; Yu, Demei</creator><creatorcontrib>Su, Xiaolong ; Jia, Shikui ; Cao, Le ; Yu, Demei</creatorcontrib><description>As an environment‐friendly polyester, polylactic acid (PLA) shows great potential market value. While it still faces some obstacles in large‐scale practical application due to its brittleness. In this work, a novel strategy to improve the toughness of polylactic acid is developed. By adjusting processing temperature during the melt‐blending process, thermoplastic polyurethane/poly (D‐lactic) acid/poly (L‐lactic) acid (TPU/PDLA/PLLA) ternary blends with different morphology are obtained. The experimental results show that the TPU in ternary blends formed a fibrillated micro‐morphology, and the interfacial compatibility between the components is improved when the processing temperature is adjusted to 200°C. Under the synergistic action of in‐situ fibrillated TPU and stereocomplex (SC) crystals, the toughness of the ternary blends is improved significantly without sacrificing its own tensile strength. The maximum value of tensile strength, elongation at break, and fracture work of ternary blends are 61.9 MPa, 23.5%, and 1038.9 kJ/m3, respectively. In addition, the melt strength of ternary blends was significantly improved, which is a benefit to their processing application.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.51014</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>crystallization ; Elongation ; Market value ; Materials science ; mechanical properties ; Morphology ; Polylactic acid ; Polymer blends ; Polymers ; Polyurethane resins ; rheology ; structure‐property relationships ; Tensile strength ; Urethane thermoplastic elastomers</subject><ispartof>Journal of applied polymer science, 2021-10, Vol.138 (39), p.n/a</ispartof><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2974-d1116960416159a1adef40b828fbdd472b204b02a93f05fadf1f9a4752e8f6393</citedby><cites>FETCH-LOGICAL-c2974-d1116960416159a1adef40b828fbdd472b204b02a93f05fadf1f9a4752e8f6393</cites><orcidid>0000-0001-7134-9611 ; 0000-0002-1006-2163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.51014$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.51014$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Su, Xiaolong</creatorcontrib><creatorcontrib>Jia, Shikui</creatorcontrib><creatorcontrib>Cao, Le</creatorcontrib><creatorcontrib>Yu, Demei</creatorcontrib><title>High performance polylactic acid/thermoplastic polyurethane blends with in‐situ fibrillated morphology</title><title>Journal of applied polymer science</title><description>As an environment‐friendly polyester, polylactic acid (PLA) shows great potential market value. While it still faces some obstacles in large‐scale practical application due to its brittleness. In this work, a novel strategy to improve the toughness of polylactic acid is developed. By adjusting processing temperature during the melt‐blending process, thermoplastic polyurethane/poly (D‐lactic) acid/poly (L‐lactic) acid (TPU/PDLA/PLLA) ternary blends with different morphology are obtained. The experimental results show that the TPU in ternary blends formed a fibrillated micro‐morphology, and the interfacial compatibility between the components is improved when the processing temperature is adjusted to 200°C. Under the synergistic action of in‐situ fibrillated TPU and stereocomplex (SC) crystals, the toughness of the ternary blends is improved significantly without sacrificing its own tensile strength. The maximum value of tensile strength, elongation at break, and fracture work of ternary blends are 61.9 MPa, 23.5%, and 1038.9 kJ/m3, respectively. In addition, the melt strength of ternary blends was significantly improved, which is a benefit to their processing application.</description><subject>crystallization</subject><subject>Elongation</subject><subject>Market value</subject><subject>Materials science</subject><subject>mechanical properties</subject><subject>Morphology</subject><subject>Polylactic acid</subject><subject>Polymer blends</subject><subject>Polymers</subject><subject>Polyurethane resins</subject><subject>rheology</subject><subject>structure‐property relationships</subject><subject>Tensile strength</subject><subject>Urethane thermoplastic elastomers</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EEuUy8AaWmBjS2q5z8VhVQJEq0QFmy4ntxpUTGztRlY1H4Bl5ElLCynSk83__OdIHwB1Gc4wQWQjv5ylGmJ6BGUYsT2hGinMwGzOcFIyll-AqxgNCGKcom4F6Y_Y19CpoFxrRVgp6Zwcrqs5UUFRGLrpahcZ5K-JpdUr7oLpatAqWVrUywqPpamja78-vaLoealMGY63olISNC7521u2HG3ChhY3q9m9eg_enx7f1Jtm-Pr-sV9ukIiynicQYZyxDFGc4ZQILqTRFZUEKXUpJc1ISREtEBFtqlGohNdZM0DwlqtDZki2vwf101wf30avY8YPrQzu-5CTN0CgJFelIPUxUFVyMQWnug2lEGDhG_CSSjyL5r8iRXUzs0Vg1_A_y1W43NX4AO_t3aA</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Su, Xiaolong</creator><creator>Jia, Shikui</creator><creator>Cao, Le</creator><creator>Yu, Demei</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-7134-9611</orcidid><orcidid>https://orcid.org/0000-0002-1006-2163</orcidid></search><sort><creationdate>20211015</creationdate><title>High performance polylactic acid/thermoplastic polyurethane blends with in‐situ fibrillated morphology</title><author>Su, Xiaolong ; Jia, Shikui ; Cao, Le ; Yu, Demei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2974-d1116960416159a1adef40b828fbdd472b204b02a93f05fadf1f9a4752e8f6393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>crystallization</topic><topic>Elongation</topic><topic>Market value</topic><topic>Materials science</topic><topic>mechanical properties</topic><topic>Morphology</topic><topic>Polylactic acid</topic><topic>Polymer blends</topic><topic>Polymers</topic><topic>Polyurethane resins</topic><topic>rheology</topic><topic>structure‐property relationships</topic><topic>Tensile strength</topic><topic>Urethane thermoplastic elastomers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Xiaolong</creatorcontrib><creatorcontrib>Jia, Shikui</creatorcontrib><creatorcontrib>Cao, Le</creatorcontrib><creatorcontrib>Yu, Demei</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Xiaolong</au><au>Jia, Shikui</au><au>Cao, Le</au><au>Yu, Demei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High performance polylactic acid/thermoplastic polyurethane blends with in‐situ fibrillated morphology</atitle><jtitle>Journal of applied polymer science</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>138</volume><issue>39</issue><epage>n/a</epage><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>As an environment‐friendly polyester, polylactic acid (PLA) shows great potential market value. While it still faces some obstacles in large‐scale practical application due to its brittleness. In this work, a novel strategy to improve the toughness of polylactic acid is developed. By adjusting processing temperature during the melt‐blending process, thermoplastic polyurethane/poly (D‐lactic) acid/poly (L‐lactic) acid (TPU/PDLA/PLLA) ternary blends with different morphology are obtained. The experimental results show that the TPU in ternary blends formed a fibrillated micro‐morphology, and the interfacial compatibility between the components is improved when the processing temperature is adjusted to 200°C. Under the synergistic action of in‐situ fibrillated TPU and stereocomplex (SC) crystals, the toughness of the ternary blends is improved significantly without sacrificing its own tensile strength. The maximum value of tensile strength, elongation at break, and fracture work of ternary blends are 61.9 MPa, 23.5%, and 1038.9 kJ/m3, respectively. In addition, the melt strength of ternary blends was significantly improved, which is a benefit to their processing application.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.51014</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7134-9611</orcidid><orcidid>https://orcid.org/0000-0002-1006-2163</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2021-10, Vol.138 (39), p.n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_journals_2560100085
source Wiley Online Library Journals Frontfile Complete
subjects crystallization
Elongation
Market value
Materials science
mechanical properties
Morphology
Polylactic acid
Polymer blends
Polymers
Polyurethane resins
rheology
structure‐property relationships
Tensile strength
Urethane thermoplastic elastomers
title High performance polylactic acid/thermoplastic polyurethane blends with in‐situ fibrillated morphology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A28%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20performance%20polylactic%20acid/thermoplastic%20polyurethane%20blends%20with%20in%E2%80%90situ%20fibrillated%20morphology&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Su,%20Xiaolong&rft.date=2021-10-15&rft.volume=138&rft.issue=39&rft.epage=n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.51014&rft_dat=%3Cproquest_cross%3E2560100085%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560100085&rft_id=info:pmid/&rfr_iscdi=true