Landsat-based long-term LUCC mapping in Xinlicheng Reservoir Basin using object-based classification

Rapid urbanization dramatically changes the local environment around Xinlicheng Reservoir Basin. Landsat images are suitable for the land use change caused by human impact. In order to obtain consistent land cover products, a hybrid classification method combining object-based classification and pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2017-05, Vol.64 (1), p.12024
Hauptverfasser: Su, Wei, Liang, Dongmei, Tang, Gula, Xiao, Zundong, Li, Jingxin, Wan, Zhengyu, Li, Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12024
container_title IOP conference series. Earth and environmental science
container_volume 64
creator Su, Wei
Liang, Dongmei
Tang, Gula
Xiao, Zundong
Li, Jingxin
Wan, Zhengyu
Li, Ping
description Rapid urbanization dramatically changes the local environment around Xinlicheng Reservoir Basin. Landsat images are suitable for the land use change caused by human impact. In order to obtain consistent land cover products, a hybrid classification method combining object-based classification and pre-classification alteration detection method was developed and applied to long-term multi-temporal Landsat images to obtain land cover change information. Object-based classification method was combined with Random forest (RF) classifier to classify the Landsat image in 2008. Then the changed areas in 2000, 2004, 2012, and 2016 were identified by comparing with the images in 2008 via the re-weighted multivariate alteration detection transformation method. The images in 2000, 2004, 2012 and 2016 were classified by RF classifier. Land cover maps for 2000, 2004, 2012, and 2016 were produced by combining the unchanged area in 2008 with the new classes of the changed areas in 2000, 2004, 2012 and 2016. According to the accuracy assessment, the overall accuracy of the land covers of the four periods are all greater than 93%. The accuracy assessment indicates that this hybrid method can produce consistent land cover datasets for a long time period.
doi_str_mv 10.1088/1755-1315/64/1/012024
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2560087581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560087581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-faf07353a86434ffa05b456d6755e7b8f95d9f8ab2e6ec3e1410f5aa797104ac3</originalsourceid><addsrcrecordid>eNp9kMtKxDAUhoMoOI4-glBw4ao2aXNplzqMFygI6oC7cJomY4ZOU5OO4NvbUm8LcXVu3_nP4UfolOALgvM8IYKxmGSEJZwmJMEkxSndQ7Pv_v53jsUhOgphgzEXNCtmqC6hrQP0cQVB11Hj2nXca7-NytViEW2h62y7jmwbPdu2sepFD9WDDtq_OeujKwjDaBdGxlUbrb50VAMhWGMV9Na1x-jAQBP0yWeco9X18mlxG5f3N3eLyzJWFKd9bMBgkbEMck4zagxgVlHGaz78rkWVm4LVhcmhSjXXKtOEEmwYgCgEwRRUNkdnk27n3etOh15u3M63w0mZMo5xLlhOBopNlPIuBK-N7Lzdgn-XBMvRUDmaJUfjJKeSyMnQYe982rOu-xFeLh9_U7KrzUCSP8j_1T8AVq-ETQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560087581</pqid></control><display><type>article</type><title>Landsat-based long-term LUCC mapping in Xinlicheng Reservoir Basin using object-based classification</title><source>Institute of Physics Open Access Journal Titles</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><creator>Su, Wei ; Liang, Dongmei ; Tang, Gula ; Xiao, Zundong ; Li, Jingxin ; Wan, Zhengyu ; Li, Ping</creator><creatorcontrib>Su, Wei ; Liang, Dongmei ; Tang, Gula ; Xiao, Zundong ; Li, Jingxin ; Wan, Zhengyu ; Li, Ping</creatorcontrib><description>Rapid urbanization dramatically changes the local environment around Xinlicheng Reservoir Basin. Landsat images are suitable for the land use change caused by human impact. In order to obtain consistent land cover products, a hybrid classification method combining object-based classification and pre-classification alteration detection method was developed and applied to long-term multi-temporal Landsat images to obtain land cover change information. Object-based classification method was combined with Random forest (RF) classifier to classify the Landsat image in 2008. Then the changed areas in 2000, 2004, 2012, and 2016 were identified by comparing with the images in 2008 via the re-weighted multivariate alteration detection transformation method. The images in 2000, 2004, 2012 and 2016 were classified by RF classifier. Land cover maps for 2000, 2004, 2012, and 2016 were produced by combining the unchanged area in 2008 with the new classes of the changed areas in 2000, 2004, 2012 and 2016. According to the accuracy assessment, the overall accuracy of the land covers of the four periods are all greater than 93%. The accuracy assessment indicates that this hybrid method can produce consistent land cover datasets for a long time period.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/64/1/012024</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Accuracy ; Classification ; Classifiers ; Human impact ; Human influences ; Image classification ; Land cover ; Land use ; Landsat ; Landsat satellites ; Remote sensing ; Reservoirs ; Satellite imagery ; Urbanization</subject><ispartof>IOP conference series. Earth and environmental science, 2017-05, Vol.64 (1), p.12024</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2017. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-faf07353a86434ffa05b456d6755e7b8f95d9f8ab2e6ec3e1410f5aa797104ac3</citedby><cites>FETCH-LOGICAL-c402t-faf07353a86434ffa05b456d6755e7b8f95d9f8ab2e6ec3e1410f5aa797104ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/64/1/012024/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Su, Wei</creatorcontrib><creatorcontrib>Liang, Dongmei</creatorcontrib><creatorcontrib>Tang, Gula</creatorcontrib><creatorcontrib>Xiao, Zundong</creatorcontrib><creatorcontrib>Li, Jingxin</creatorcontrib><creatorcontrib>Wan, Zhengyu</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><title>Landsat-based long-term LUCC mapping in Xinlicheng Reservoir Basin using object-based classification</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>Rapid urbanization dramatically changes the local environment around Xinlicheng Reservoir Basin. Landsat images are suitable for the land use change caused by human impact. In order to obtain consistent land cover products, a hybrid classification method combining object-based classification and pre-classification alteration detection method was developed and applied to long-term multi-temporal Landsat images to obtain land cover change information. Object-based classification method was combined with Random forest (RF) classifier to classify the Landsat image in 2008. Then the changed areas in 2000, 2004, 2012, and 2016 were identified by comparing with the images in 2008 via the re-weighted multivariate alteration detection transformation method. The images in 2000, 2004, 2012 and 2016 were classified by RF classifier. Land cover maps for 2000, 2004, 2012, and 2016 were produced by combining the unchanged area in 2008 with the new classes of the changed areas in 2000, 2004, 2012 and 2016. According to the accuracy assessment, the overall accuracy of the land covers of the four periods are all greater than 93%. The accuracy assessment indicates that this hybrid method can produce consistent land cover datasets for a long time period.</description><subject>Accuracy</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Human impact</subject><subject>Human influences</subject><subject>Image classification</subject><subject>Land cover</subject><subject>Land use</subject><subject>Landsat</subject><subject>Landsat satellites</subject><subject>Remote sensing</subject><subject>Reservoirs</subject><subject>Satellite imagery</subject><subject>Urbanization</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kMtKxDAUhoMoOI4-glBw4ao2aXNplzqMFygI6oC7cJomY4ZOU5OO4NvbUm8LcXVu3_nP4UfolOALgvM8IYKxmGSEJZwmJMEkxSndQ7Pv_v53jsUhOgphgzEXNCtmqC6hrQP0cQVB11Hj2nXca7-NytViEW2h62y7jmwbPdu2sepFD9WDDtq_OeujKwjDaBdGxlUbrb50VAMhWGMV9Na1x-jAQBP0yWeco9X18mlxG5f3N3eLyzJWFKd9bMBgkbEMck4zagxgVlHGaz78rkWVm4LVhcmhSjXXKtOEEmwYgCgEwRRUNkdnk27n3etOh15u3M63w0mZMo5xLlhOBopNlPIuBK-N7Lzdgn-XBMvRUDmaJUfjJKeSyMnQYe982rOu-xFeLh9_U7KrzUCSP8j_1T8AVq-ETQ</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Su, Wei</creator><creator>Liang, Dongmei</creator><creator>Tang, Gula</creator><creator>Xiao, Zundong</creator><creator>Li, Jingxin</creator><creator>Wan, Zhengyu</creator><creator>Li, Ping</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20170501</creationdate><title>Landsat-based long-term LUCC mapping in Xinlicheng Reservoir Basin using object-based classification</title><author>Su, Wei ; Liang, Dongmei ; Tang, Gula ; Xiao, Zundong ; Li, Jingxin ; Wan, Zhengyu ; Li, Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-faf07353a86434ffa05b456d6755e7b8f95d9f8ab2e6ec3e1410f5aa797104ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Human impact</topic><topic>Human influences</topic><topic>Image classification</topic><topic>Land cover</topic><topic>Land use</topic><topic>Landsat</topic><topic>Landsat satellites</topic><topic>Remote sensing</topic><topic>Reservoirs</topic><topic>Satellite imagery</topic><topic>Urbanization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Su, Wei</creatorcontrib><creatorcontrib>Liang, Dongmei</creatorcontrib><creatorcontrib>Tang, Gula</creatorcontrib><creatorcontrib>Xiao, Zundong</creatorcontrib><creatorcontrib>Li, Jingxin</creatorcontrib><creatorcontrib>Wan, Zhengyu</creatorcontrib><creatorcontrib>Li, Ping</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Wei</au><au>Liang, Dongmei</au><au>Tang, Gula</au><au>Xiao, Zundong</au><au>Li, Jingxin</au><au>Wan, Zhengyu</au><au>Li, Ping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landsat-based long-term LUCC mapping in Xinlicheng Reservoir Basin using object-based classification</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>64</volume><issue>1</issue><spage>12024</spage><pages>12024-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Rapid urbanization dramatically changes the local environment around Xinlicheng Reservoir Basin. Landsat images are suitable for the land use change caused by human impact. In order to obtain consistent land cover products, a hybrid classification method combining object-based classification and pre-classification alteration detection method was developed and applied to long-term multi-temporal Landsat images to obtain land cover change information. Object-based classification method was combined with Random forest (RF) classifier to classify the Landsat image in 2008. Then the changed areas in 2000, 2004, 2012, and 2016 were identified by comparing with the images in 2008 via the re-weighted multivariate alteration detection transformation method. The images in 2000, 2004, 2012 and 2016 were classified by RF classifier. Land cover maps for 2000, 2004, 2012, and 2016 were produced by combining the unchanged area in 2008 with the new classes of the changed areas in 2000, 2004, 2012 and 2016. According to the accuracy assessment, the overall accuracy of the land covers of the four periods are all greater than 93%. The accuracy assessment indicates that this hybrid method can produce consistent land cover datasets for a long time period.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/64/1/012024</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2017-05, Vol.64 (1), p.12024
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2560087581
source Institute of Physics Open Access Journal Titles; EZB-FREE-00999 freely available EZB journals; IOPscience extra
subjects Accuracy
Classification
Classifiers
Human impact
Human influences
Image classification
Land cover
Land use
Landsat
Landsat satellites
Remote sensing
Reservoirs
Satellite imagery
Urbanization
title Landsat-based long-term LUCC mapping in Xinlicheng Reservoir Basin using object-based classification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A36%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landsat-based%20long-term%20LUCC%20mapping%20in%20Xinlicheng%20Reservoir%20Basin%20using%20object-based%20classification&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Su,%20Wei&rft.date=2017-05-01&rft.volume=64&rft.issue=1&rft.spage=12024&rft.pages=12024-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/64/1/012024&rft_dat=%3Cproquest_iop_j%3E2560087581%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560087581&rft_id=info:pmid/&rfr_iscdi=true