Growth and characterization of pure stannite Cu2MnSnS4 thin films deposited by dip-coating technique

Semiconductor compounds Cu 2 MnSnS 4 absorbers materials were synthesis by the sol–gel approach and deposited using dip-coating technique on ordinary glass substrates. In this work, we have studied the effect of various annealing temperature such as: 400 °C, 425 °C, 450 °C and 475 °C for 1 min on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2021-09, Vol.127 (9), Article 663
Hauptverfasser: Ziti, Ahmed, Hartiti, Bouchaib, Belafhaili, Amine, Labrim, Hicham, Fadili, Salah, Ridah, Abderraouf, Tahri, Mounia, Thevenin, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Applied physics. A, Materials science & processing
container_volume 127
creator Ziti, Ahmed
Hartiti, Bouchaib
Belafhaili, Amine
Labrim, Hicham
Fadili, Salah
Ridah, Abderraouf
Tahri, Mounia
Thevenin, Philippe
description Semiconductor compounds Cu 2 MnSnS 4 absorbers materials were synthesis by the sol–gel approach and deposited using dip-coating technique on ordinary glass substrates. In this work, we have studied the effect of various annealing temperature such as: 400 °C, 425 °C, 450 °C and 475 °C for 1 min on the structural, compositional, morphological, optical and electrical investigations. CMnTS thin films have been characterized by some analyse techniques such as: X-ray diffractometer (XRD), Raman spectroscopy, dispersive X-ray spectroscopy (EDS), scanning electron microscope (SEM), UV–visible spectroscopy and four-point probe method. XRD data proved the formation of stannite Cu 2 MnSnS 4 with privileged direction at (112) plane. Crystallite size of stannite CMnTS thin films increased with the increase of annealing temperature from 7.26 to 11.57 nm with annealing temperature augmented. Raman experiments complete the confirmation of stannite CMnTS thin films existence by Raman vibrational modes located at 288 cm −1 and 330 cm −1 . EDS analysis demonstrated close-stoichiometry of CMnTS thin films annealed at 450 and 475 °C. SEM images demonstrated the improvement of crystallinity and uniformity of surface morphologies when annealing temperature is 475 °C. UV–visible spectroscopy indicated that the transmittance spectra increased when annealing temperature increased in the wavelength range of 450–850 nm. The absorption coefficient values are higher than 10 4  cm −1 , the approximated bandgap of CMnTS absorber material decrease in the range of 1.72–1.5 eV when annealing temperature increased. The electrical resistivity of CMnTS thin films decrease from 4.77 to 0.85 (Ω.cm). These properties are appropriate for photovoltaic solar cells applications.
doi_str_mv 10.1007/s00339-021-04824-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2560075767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2560075767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-6d048b31a5141ecca0a346e4ee78e57b9f38c8012fa45233379f927cee32a2573</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqXwAkyWmA2-JU5GVEFBKmIozJbrOI2r1g62IxSeHpcgsXGWM5z_cvQBcE3wLcFY3EWMGasRpgRhXlGOxhMwI5xRhEuGT8EM11ygitXlObiIcYfzcEpnoFkG_5k6qFwDdaeC0skE-6WS9Q76FvZDMDAm5ZxNBi4G-uLWbs1h6qyDrd0fImxM72O-NnAzwsb2SPtsd1uYjO6c_RjMJThr1T6aq989B--PD2-LJ7R6XT4v7ldIM1InVDb59w0jqiCcGK0VVoyXhhsjKlOITd2ySleY0FbxgjLGRN3WVGhjGFW0EGwObqbcPvhcG5Pc-SG4XClpUWZOhSiPKjqpdPAxBtPKPtiDCqMkWB5pyommzDTlD005ZhObTDGL3daEv-h_XN_rRniX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560075767</pqid></control><display><type>article</type><title>Growth and characterization of pure stannite Cu2MnSnS4 thin films deposited by dip-coating technique</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ziti, Ahmed ; Hartiti, Bouchaib ; Belafhaili, Amine ; Labrim, Hicham ; Fadili, Salah ; Ridah, Abderraouf ; Tahri, Mounia ; Thevenin, Philippe</creator><creatorcontrib>Ziti, Ahmed ; Hartiti, Bouchaib ; Belafhaili, Amine ; Labrim, Hicham ; Fadili, Salah ; Ridah, Abderraouf ; Tahri, Mounia ; Thevenin, Philippe</creatorcontrib><description>Semiconductor compounds Cu 2 MnSnS 4 absorbers materials were synthesis by the sol–gel approach and deposited using dip-coating technique on ordinary glass substrates. In this work, we have studied the effect of various annealing temperature such as: 400 °C, 425 °C, 450 °C and 475 °C for 1 min on the structural, compositional, morphological, optical and electrical investigations. CMnTS thin films have been characterized by some analyse techniques such as: X-ray diffractometer (XRD), Raman spectroscopy, dispersive X-ray spectroscopy (EDS), scanning electron microscope (SEM), UV–visible spectroscopy and four-point probe method. XRD data proved the formation of stannite Cu 2 MnSnS 4 with privileged direction at (112) plane. Crystallite size of stannite CMnTS thin films increased with the increase of annealing temperature from 7.26 to 11.57 nm with annealing temperature augmented. Raman experiments complete the confirmation of stannite CMnTS thin films existence by Raman vibrational modes located at 288 cm −1 and 330 cm −1 . EDS analysis demonstrated close-stoichiometry of CMnTS thin films annealed at 450 and 475 °C. SEM images demonstrated the improvement of crystallinity and uniformity of surface morphologies when annealing temperature is 475 °C. UV–visible spectroscopy indicated that the transmittance spectra increased when annealing temperature increased in the wavelength range of 450–850 nm. The absorption coefficient values are higher than 10 4  cm −1 , the approximated bandgap of CMnTS absorber material decrease in the range of 1.72–1.5 eV when annealing temperature increased. The electrical resistivity of CMnTS thin films decrease from 4.77 to 0.85 (Ω.cm). These properties are appropriate for photovoltaic solar cells applications.</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-021-04824-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Absorbers (materials) ; Absorptivity ; Annealing ; Applied physics ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Crystallites ; Dip coatings ; Four point probe method ; Glass substrates ; Immersion coating ; Machines ; Manufacturing ; Materials science ; Morphology ; Nanotechnology ; Optical and Electronic Materials ; Photovoltaic cells ; Physics ; Physics and Astronomy ; Processes ; Raman spectroscopy ; Scanning electron microscopy ; Sol-gel processes ; Solar cells ; Spectrum analysis ; Stoichiometry ; Surfaces and Interfaces ; Thin Films ; X-ray diffraction ; X-ray spectroscopy</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2021-09, Vol.127 (9), Article 663</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-6d048b31a5141ecca0a346e4ee78e57b9f38c8012fa45233379f927cee32a2573</citedby><cites>FETCH-LOGICAL-c319t-6d048b31a5141ecca0a346e4ee78e57b9f38c8012fa45233379f927cee32a2573</cites><orcidid>0000-0002-0995-4527</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-021-04824-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-021-04824-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ziti, Ahmed</creatorcontrib><creatorcontrib>Hartiti, Bouchaib</creatorcontrib><creatorcontrib>Belafhaili, Amine</creatorcontrib><creatorcontrib>Labrim, Hicham</creatorcontrib><creatorcontrib>Fadili, Salah</creatorcontrib><creatorcontrib>Ridah, Abderraouf</creatorcontrib><creatorcontrib>Tahri, Mounia</creatorcontrib><creatorcontrib>Thevenin, Philippe</creatorcontrib><title>Growth and characterization of pure stannite Cu2MnSnS4 thin films deposited by dip-coating technique</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Semiconductor compounds Cu 2 MnSnS 4 absorbers materials were synthesis by the sol–gel approach and deposited using dip-coating technique on ordinary glass substrates. In this work, we have studied the effect of various annealing temperature such as: 400 °C, 425 °C, 450 °C and 475 °C for 1 min on the structural, compositional, morphological, optical and electrical investigations. CMnTS thin films have been characterized by some analyse techniques such as: X-ray diffractometer (XRD), Raman spectroscopy, dispersive X-ray spectroscopy (EDS), scanning electron microscope (SEM), UV–visible spectroscopy and four-point probe method. XRD data proved the formation of stannite Cu 2 MnSnS 4 with privileged direction at (112) plane. Crystallite size of stannite CMnTS thin films increased with the increase of annealing temperature from 7.26 to 11.57 nm with annealing temperature augmented. Raman experiments complete the confirmation of stannite CMnTS thin films existence by Raman vibrational modes located at 288 cm −1 and 330 cm −1 . EDS analysis demonstrated close-stoichiometry of CMnTS thin films annealed at 450 and 475 °C. SEM images demonstrated the improvement of crystallinity and uniformity of surface morphologies when annealing temperature is 475 °C. UV–visible spectroscopy indicated that the transmittance spectra increased when annealing temperature increased in the wavelength range of 450–850 nm. The absorption coefficient values are higher than 10 4  cm −1 , the approximated bandgap of CMnTS absorber material decrease in the range of 1.72–1.5 eV when annealing temperature increased. The electrical resistivity of CMnTS thin films decrease from 4.77 to 0.85 (Ω.cm). These properties are appropriate for photovoltaic solar cells applications.</description><subject>Absorbers (materials)</subject><subject>Absorptivity</subject><subject>Annealing</subject><subject>Applied physics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Crystallites</subject><subject>Dip coatings</subject><subject>Four point probe method</subject><subject>Glass substrates</subject><subject>Immersion coating</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Morphology</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Raman spectroscopy</subject><subject>Scanning electron microscopy</subject><subject>Sol-gel processes</subject><subject>Solar cells</subject><subject>Spectrum analysis</subject><subject>Stoichiometry</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>X-ray diffraction</subject><subject>X-ray spectroscopy</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLtOwzAUhi0EEqXwAkyWmA2-JU5GVEFBKmIozJbrOI2r1g62IxSeHpcgsXGWM5z_cvQBcE3wLcFY3EWMGasRpgRhXlGOxhMwI5xRhEuGT8EM11ygitXlObiIcYfzcEpnoFkG_5k6qFwDdaeC0skE-6WS9Q76FvZDMDAm5ZxNBi4G-uLWbs1h6qyDrd0fImxM72O-NnAzwsb2SPtsd1uYjO6c_RjMJThr1T6aq989B--PD2-LJ7R6XT4v7ldIM1InVDb59w0jqiCcGK0VVoyXhhsjKlOITd2ySleY0FbxgjLGRN3WVGhjGFW0EGwObqbcPvhcG5Pc-SG4XClpUWZOhSiPKjqpdPAxBtPKPtiDCqMkWB5pyommzDTlD005ZhObTDGL3daEv-h_XN_rRniX</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Ziti, Ahmed</creator><creator>Hartiti, Bouchaib</creator><creator>Belafhaili, Amine</creator><creator>Labrim, Hicham</creator><creator>Fadili, Salah</creator><creator>Ridah, Abderraouf</creator><creator>Tahri, Mounia</creator><creator>Thevenin, Philippe</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0995-4527</orcidid></search><sort><creationdate>20210901</creationdate><title>Growth and characterization of pure stannite Cu2MnSnS4 thin films deposited by dip-coating technique</title><author>Ziti, Ahmed ; Hartiti, Bouchaib ; Belafhaili, Amine ; Labrim, Hicham ; Fadili, Salah ; Ridah, Abderraouf ; Tahri, Mounia ; Thevenin, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-6d048b31a5141ecca0a346e4ee78e57b9f38c8012fa45233379f927cee32a2573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Absorbers (materials)</topic><topic>Absorptivity</topic><topic>Annealing</topic><topic>Applied physics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Crystallites</topic><topic>Dip coatings</topic><topic>Four point probe method</topic><topic>Glass substrates</topic><topic>Immersion coating</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Morphology</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Raman spectroscopy</topic><topic>Scanning electron microscopy</topic><topic>Sol-gel processes</topic><topic>Solar cells</topic><topic>Spectrum analysis</topic><topic>Stoichiometry</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>X-ray diffraction</topic><topic>X-ray spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziti, Ahmed</creatorcontrib><creatorcontrib>Hartiti, Bouchaib</creatorcontrib><creatorcontrib>Belafhaili, Amine</creatorcontrib><creatorcontrib>Labrim, Hicham</creatorcontrib><creatorcontrib>Fadili, Salah</creatorcontrib><creatorcontrib>Ridah, Abderraouf</creatorcontrib><creatorcontrib>Tahri, Mounia</creatorcontrib><creatorcontrib>Thevenin, Philippe</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziti, Ahmed</au><au>Hartiti, Bouchaib</au><au>Belafhaili, Amine</au><au>Labrim, Hicham</au><au>Fadili, Salah</au><au>Ridah, Abderraouf</au><au>Tahri, Mounia</au><au>Thevenin, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Growth and characterization of pure stannite Cu2MnSnS4 thin films deposited by dip-coating technique</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>127</volume><issue>9</issue><artnum>663</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Semiconductor compounds Cu 2 MnSnS 4 absorbers materials were synthesis by the sol–gel approach and deposited using dip-coating technique on ordinary glass substrates. In this work, we have studied the effect of various annealing temperature such as: 400 °C, 425 °C, 450 °C and 475 °C for 1 min on the structural, compositional, morphological, optical and electrical investigations. CMnTS thin films have been characterized by some analyse techniques such as: X-ray diffractometer (XRD), Raman spectroscopy, dispersive X-ray spectroscopy (EDS), scanning electron microscope (SEM), UV–visible spectroscopy and four-point probe method. XRD data proved the formation of stannite Cu 2 MnSnS 4 with privileged direction at (112) plane. Crystallite size of stannite CMnTS thin films increased with the increase of annealing temperature from 7.26 to 11.57 nm with annealing temperature augmented. Raman experiments complete the confirmation of stannite CMnTS thin films existence by Raman vibrational modes located at 288 cm −1 and 330 cm −1 . EDS analysis demonstrated close-stoichiometry of CMnTS thin films annealed at 450 and 475 °C. SEM images demonstrated the improvement of crystallinity and uniformity of surface morphologies when annealing temperature is 475 °C. UV–visible spectroscopy indicated that the transmittance spectra increased when annealing temperature increased in the wavelength range of 450–850 nm. The absorption coefficient values are higher than 10 4  cm −1 , the approximated bandgap of CMnTS absorber material decrease in the range of 1.72–1.5 eV when annealing temperature increased. The electrical resistivity of CMnTS thin films decrease from 4.77 to 0.85 (Ω.cm). These properties are appropriate for photovoltaic solar cells applications.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-021-04824-y</doi><orcidid>https://orcid.org/0000-0002-0995-4527</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2021-09, Vol.127 (9), Article 663
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_2560075767
source SpringerLink Journals - AutoHoldings
subjects Absorbers (materials)
Absorptivity
Annealing
Applied physics
Characterization and Evaluation of Materials
Condensed Matter Physics
Crystallites
Dip coatings
Four point probe method
Glass substrates
Immersion coating
Machines
Manufacturing
Materials science
Morphology
Nanotechnology
Optical and Electronic Materials
Photovoltaic cells
Physics
Physics and Astronomy
Processes
Raman spectroscopy
Scanning electron microscopy
Sol-gel processes
Solar cells
Spectrum analysis
Stoichiometry
Surfaces and Interfaces
Thin Films
X-ray diffraction
X-ray spectroscopy
title Growth and characterization of pure stannite Cu2MnSnS4 thin films deposited by dip-coating technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T18%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Growth%20and%20characterization%20of%20pure%20stannite%20Cu2MnSnS4%20thin%20films%20deposited%20by%20dip-coating%20technique&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Ziti,%20Ahmed&rft.date=2021-09-01&rft.volume=127&rft.issue=9&rft.artnum=663&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-021-04824-y&rft_dat=%3Cproquest_cross%3E2560075767%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2560075767&rft_id=info:pmid/&rfr_iscdi=true