Leveraging Commonsense Knowledge on Classifying False News and Determining Checkworthiness of Claims
Widespread and rapid dissemination of false news has made fact-checking an indispensable requirement. Given its time-consuming and labor-intensive nature, the task calls for an automated support to meet the demand. In this paper, we propose to leverage commonsense knowledge for the tasks of false ne...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-08 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Schlicht, Ipek Baris Sezerer, Erhan Tekir, Selma Han, Oul Boukhers, Zeyd |
description | Widespread and rapid dissemination of false news has made fact-checking an indispensable requirement. Given its time-consuming and labor-intensive nature, the task calls for an automated support to meet the demand. In this paper, we propose to leverage commonsense knowledge for the tasks of false news classification and check-worthy claim detection. Arguing that commonsense knowledge is a factor in human believability, we fine-tune the BERT language model with a commonsense question answering task and the aforementioned tasks in a multi-task learning environment. For predicting fine-grained false news types, we compare the proposed fine-tuned model's performance with the false news classification models on a public dataset as well as a newly collected dataset. We compare the model's performance with the single-task BERT model and a state-of-the-art check-worthy claim detection tool to evaluate the check-worthy claim detection. Our experimental analysis demonstrates that commonsense knowledge can improve performance in both tasks. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2559943563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559943563</sourcerecordid><originalsourceid>FETCH-proquest_journals_25599435633</originalsourceid><addsrcrecordid>eNqNjtEKgjAYhUcQJOU7DLoWbFPLa0uCoqvuZeSvztxW-zXp7ZvRAwQHzsX5Pjgz4jHON8EuYmxBfMQ2DEOWbFkcc4-UZ3iBFbXUNc2MUkYjuNCTNmMHZQ3UaJp1AlFW7wnKRefmC4xIhS7pHnqwSuqv38DtPhrbN1IDIjXVZEqFKzKvJs3_9ZKs88M1OwYPa54DYF-0ZrDaTYV7laYRjxPO_6M-VdNGxg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559943563</pqid></control><display><type>article</type><title>Leveraging Commonsense Knowledge on Classifying False News and Determining Checkworthiness of Claims</title><source>Free E- Journals</source><creator>Schlicht, Ipek Baris ; Sezerer, Erhan ; Tekir, Selma ; Han, Oul ; Boukhers, Zeyd</creator><creatorcontrib>Schlicht, Ipek Baris ; Sezerer, Erhan ; Tekir, Selma ; Han, Oul ; Boukhers, Zeyd</creatorcontrib><description>Widespread and rapid dissemination of false news has made fact-checking an indispensable requirement. Given its time-consuming and labor-intensive nature, the task calls for an automated support to meet the demand. In this paper, we propose to leverage commonsense knowledge for the tasks of false news classification and check-worthy claim detection. Arguing that commonsense knowledge is a factor in human believability, we fine-tune the BERT language model with a commonsense question answering task and the aforementioned tasks in a multi-task learning environment. For predicting fine-grained false news types, we compare the proposed fine-tuned model's performance with the false news classification models on a public dataset as well as a newly collected dataset. We compare the model's performance with the single-task BERT model and a state-of-the-art check-worthy claim detection tool to evaluate the check-worthy claim detection. Our experimental analysis demonstrates that commonsense knowledge can improve performance in both tasks.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Classification ; Datasets ; News ; Performance enhancement</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Schlicht, Ipek Baris</creatorcontrib><creatorcontrib>Sezerer, Erhan</creatorcontrib><creatorcontrib>Tekir, Selma</creatorcontrib><creatorcontrib>Han, Oul</creatorcontrib><creatorcontrib>Boukhers, Zeyd</creatorcontrib><title>Leveraging Commonsense Knowledge on Classifying False News and Determining Checkworthiness of Claims</title><title>arXiv.org</title><description>Widespread and rapid dissemination of false news has made fact-checking an indispensable requirement. Given its time-consuming and labor-intensive nature, the task calls for an automated support to meet the demand. In this paper, we propose to leverage commonsense knowledge for the tasks of false news classification and check-worthy claim detection. Arguing that commonsense knowledge is a factor in human believability, we fine-tune the BERT language model with a commonsense question answering task and the aforementioned tasks in a multi-task learning environment. For predicting fine-grained false news types, we compare the proposed fine-tuned model's performance with the false news classification models on a public dataset as well as a newly collected dataset. We compare the model's performance with the single-task BERT model and a state-of-the-art check-worthy claim detection tool to evaluate the check-worthy claim detection. Our experimental analysis demonstrates that commonsense knowledge can improve performance in both tasks.</description><subject>Classification</subject><subject>Datasets</subject><subject>News</subject><subject>Performance enhancement</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjtEKgjAYhUcQJOU7DLoWbFPLa0uCoqvuZeSvztxW-zXp7ZvRAwQHzsX5Pjgz4jHON8EuYmxBfMQ2DEOWbFkcc4-UZ3iBFbXUNc2MUkYjuNCTNmMHZQ3UaJp1AlFW7wnKRefmC4xIhS7pHnqwSuqv38DtPhrbN1IDIjXVZEqFKzKvJs3_9ZKs88M1OwYPa54DYF-0ZrDaTYV7laYRjxPO_6M-VdNGxg</recordid><startdate>20210808</startdate><enddate>20210808</enddate><creator>Schlicht, Ipek Baris</creator><creator>Sezerer, Erhan</creator><creator>Tekir, Selma</creator><creator>Han, Oul</creator><creator>Boukhers, Zeyd</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210808</creationdate><title>Leveraging Commonsense Knowledge on Classifying False News and Determining Checkworthiness of Claims</title><author>Schlicht, Ipek Baris ; Sezerer, Erhan ; Tekir, Selma ; Han, Oul ; Boukhers, Zeyd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25599435633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classification</topic><topic>Datasets</topic><topic>News</topic><topic>Performance enhancement</topic><toplevel>online_resources</toplevel><creatorcontrib>Schlicht, Ipek Baris</creatorcontrib><creatorcontrib>Sezerer, Erhan</creatorcontrib><creatorcontrib>Tekir, Selma</creatorcontrib><creatorcontrib>Han, Oul</creatorcontrib><creatorcontrib>Boukhers, Zeyd</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schlicht, Ipek Baris</au><au>Sezerer, Erhan</au><au>Tekir, Selma</au><au>Han, Oul</au><au>Boukhers, Zeyd</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Leveraging Commonsense Knowledge on Classifying False News and Determining Checkworthiness of Claims</atitle><jtitle>arXiv.org</jtitle><date>2021-08-08</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Widespread and rapid dissemination of false news has made fact-checking an indispensable requirement. Given its time-consuming and labor-intensive nature, the task calls for an automated support to meet the demand. In this paper, we propose to leverage commonsense knowledge for the tasks of false news classification and check-worthy claim detection. Arguing that commonsense knowledge is a factor in human believability, we fine-tune the BERT language model with a commonsense question answering task and the aforementioned tasks in a multi-task learning environment. For predicting fine-grained false news types, we compare the proposed fine-tuned model's performance with the false news classification models on a public dataset as well as a newly collected dataset. We compare the model's performance with the single-task BERT model and a state-of-the-art check-worthy claim detection tool to evaluate the check-worthy claim detection. Our experimental analysis demonstrates that commonsense knowledge can improve performance in both tasks.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-08 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2559943563 |
source | Free E- Journals |
subjects | Classification Datasets News Performance enhancement |
title | Leveraging Commonsense Knowledge on Classifying False News and Determining Checkworthiness of Claims |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Leveraging%20Commonsense%20Knowledge%20on%20Classifying%20False%20News%20and%20Determining%20Checkworthiness%20of%20Claims&rft.jtitle=arXiv.org&rft.au=Schlicht,%20Ipek%20Baris&rft.date=2021-08-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2559943563%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559943563&rft_id=info:pmid/&rfr_iscdi=true |