The effects of fusion reactor thermal transients on the microstructure of Eurofer-97 steel
Plasma-wall interactions in a commercial-scale fusion power station may exert high transient thermal loads on plasma-facing surfaces, repeatedly subjecting underlying structural materials to high temperatures for short durations. Specimens of the reduced activation ferritic-martensitic steel Eurofer...
Gespeichert in:
Veröffentlicht in: | Journal of nuclear materials 2021-10, Vol.554, p.153084, Article 153084 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 153084 |
container_title | Journal of nuclear materials |
container_volume | 554 |
creator | Kumar, D. Hargreaves, J. Bharj, A. Scorror, A. Harding, L.M. Dominguez-Andrade, H. Holmes, R. Burrows, R. Dawson, H. Warren, A.D. Flewitt, P.E.J. Martin, T.L. |
description | Plasma-wall interactions in a commercial-scale fusion power station may exert high transient thermal loads on plasma-facing surfaces, repeatedly subjecting underlying structural materials to high temperatures for short durations. Specimens of the reduced activation ferritic-martensitic steel Eurofer-97 were continuously aged at constant temperature in the range of 550°C to 950°C for up to 168 hours in a furnace to investigate the microstructural effects of short-term high temperature exposure. A CO2 laser was also used to repeatedly heat another specimen from 400°C to 850°C a total of 1,480 times over a period of 41 hours to explore transient heating effects. Microstructural changes were studied via scanning electron and focused ion beam microscopy and include (i) the coarsening of Cr-rich secondary phase precipitates when continuously heated above 750°C, (ii) an increase in average grain size above 800°C and (iii) the evolution of a new lath martensite microstructure above 850°C. Conversely, transient heating via a laser was found to result in the decomposition of the as-received lath martensite structure into ferrite and Cr-rich carbide precipitates, accompanied by a significant increase in average grain size from 0.1-2 µm to 5-40 µm. Experimental analysis was supported by thermodynamic simulation of the equilibrium phase behaviour of Eurofer-97 in MatCalc and thermal finite element modelling of plasma-wall interaction heating on the water-cooled lithium-lead tritium breeding blanket concept in Comsol Multiphysics. Simulated thermal transients were found to significantly alter the microstructure of Eurofer-97 and the implications of this are discussed. |
doi_str_mv | 10.1016/j.jnucmat.2021.153084 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559714449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002231152100307X</els_id><sourcerecordid>2559714449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-e0c7f23392f1213e5a2c5b013b2e5456617dbffeb9641c36de27f26e3e9faaa73</originalsourceid><addsrcrecordid>eNqFkEtLxDAUhYMoOI7-BCHgujXPPlYiw_iAATfjxk1I0xumZdqMSSr4703p7F1duJxz7rkfQveU5JTQ4rHP-3Eyg445I4zmVHJSiQu0olXJM1ExcolWhDCWcUrlNboJoSeEyJrIFfraHwCDtWBiwM5iO4XOjdiDNtF5HA_gB33E0esxdDDOonHe4qEz3oXoJxMnD7N1O3lnwWd1iUMEON6iK6uPAe7Oc40-X7b7zVu2-3h93zzvMsMrETMgprSM85pZyigHqZmRDaG8YSCFLApatk0q2NSFoIYXLbCkL4BDbbXWJV-jhyX35N33BCGq3k1-TCcVk7IuqRCiTiq5qObawYNVJ98N2v8qStSMUfXqjFHNGNWCMfmeFh-kF3468CqYBMJA2_kETbWu-yfhD5LSfrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559714449</pqid></control><display><type>article</type><title>The effects of fusion reactor thermal transients on the microstructure of Eurofer-97 steel</title><source>Elsevier ScienceDirect Journals</source><creator>Kumar, D. ; Hargreaves, J. ; Bharj, A. ; Scorror, A. ; Harding, L.M. ; Dominguez-Andrade, H. ; Holmes, R. ; Burrows, R. ; Dawson, H. ; Warren, A.D. ; Flewitt, P.E.J. ; Martin, T.L.</creator><creatorcontrib>Kumar, D. ; Hargreaves, J. ; Bharj, A. ; Scorror, A. ; Harding, L.M. ; Dominguez-Andrade, H. ; Holmes, R. ; Burrows, R. ; Dawson, H. ; Warren, A.D. ; Flewitt, P.E.J. ; Martin, T.L.</creatorcontrib><description>Plasma-wall interactions in a commercial-scale fusion power station may exert high transient thermal loads on plasma-facing surfaces, repeatedly subjecting underlying structural materials to high temperatures for short durations. Specimens of the reduced activation ferritic-martensitic steel Eurofer-97 were continuously aged at constant temperature in the range of 550°C to 950°C for up to 168 hours in a furnace to investigate the microstructural effects of short-term high temperature exposure. A CO2 laser was also used to repeatedly heat another specimen from 400°C to 850°C a total of 1,480 times over a period of 41 hours to explore transient heating effects. Microstructural changes were studied via scanning electron and focused ion beam microscopy and include (i) the coarsening of Cr-rich secondary phase precipitates when continuously heated above 750°C, (ii) an increase in average grain size above 800°C and (iii) the evolution of a new lath martensite microstructure above 850°C. Conversely, transient heating via a laser was found to result in the decomposition of the as-received lath martensite structure into ferrite and Cr-rich carbide precipitates, accompanied by a significant increase in average grain size from 0.1-2 µm to 5-40 µm. Experimental analysis was supported by thermodynamic simulation of the equilibrium phase behaviour of Eurofer-97 in MatCalc and thermal finite element modelling of plasma-wall interaction heating on the water-cooled lithium-lead tritium breeding blanket concept in Comsol Multiphysics. Simulated thermal transients were found to significantly alter the microstructure of Eurofer-97 and the implications of this are discussed.</description><identifier>ISSN: 0022-3115</identifier><identifier>EISSN: 1873-4820</identifier><identifier>DOI: 10.1016/j.jnucmat.2021.153084</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbon dioxide ; Carbon dioxide lasers ; Chemical precipitation ; Ferritic stainless steels ; Finite element method ; Fusion ; Fusion reactors ; Grain size ; Heat treating ; High temperature ; High temperature effects ; Ion beams ; Laser beam heating ; Lithium ; Martensite ; Martensitic stainless steels ; Microstructure ; Modelling ; Particle size ; Power plants ; Precipitates ; Thermal analysis ; Thermal effects ; Thermal simulation ; Thermal transients ; Thermodynamic equilibrium ; Transient heating ; Tritium</subject><ispartof>Journal of nuclear materials, 2021-10, Vol.554, p.153084, Article 153084</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier BV Oct 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-e0c7f23392f1213e5a2c5b013b2e5456617dbffeb9641c36de27f26e3e9faaa73</citedby><cites>FETCH-LOGICAL-c384t-e0c7f23392f1213e5a2c5b013b2e5456617dbffeb9641c36de27f26e3e9faaa73</cites><orcidid>0000-0002-8559-7592 ; 0000-0001-8903-7894 ; 0000-0002-2783-8909 ; 0000-0002-0564-3043 ; 0000-0001-5932-0277 ; 0000-0003-2963-6240</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jnucmat.2021.153084$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Kumar, D.</creatorcontrib><creatorcontrib>Hargreaves, J.</creatorcontrib><creatorcontrib>Bharj, A.</creatorcontrib><creatorcontrib>Scorror, A.</creatorcontrib><creatorcontrib>Harding, L.M.</creatorcontrib><creatorcontrib>Dominguez-Andrade, H.</creatorcontrib><creatorcontrib>Holmes, R.</creatorcontrib><creatorcontrib>Burrows, R.</creatorcontrib><creatorcontrib>Dawson, H.</creatorcontrib><creatorcontrib>Warren, A.D.</creatorcontrib><creatorcontrib>Flewitt, P.E.J.</creatorcontrib><creatorcontrib>Martin, T.L.</creatorcontrib><title>The effects of fusion reactor thermal transients on the microstructure of Eurofer-97 steel</title><title>Journal of nuclear materials</title><description>Plasma-wall interactions in a commercial-scale fusion power station may exert high transient thermal loads on plasma-facing surfaces, repeatedly subjecting underlying structural materials to high temperatures for short durations. Specimens of the reduced activation ferritic-martensitic steel Eurofer-97 were continuously aged at constant temperature in the range of 550°C to 950°C for up to 168 hours in a furnace to investigate the microstructural effects of short-term high temperature exposure. A CO2 laser was also used to repeatedly heat another specimen from 400°C to 850°C a total of 1,480 times over a period of 41 hours to explore transient heating effects. Microstructural changes were studied via scanning electron and focused ion beam microscopy and include (i) the coarsening of Cr-rich secondary phase precipitates when continuously heated above 750°C, (ii) an increase in average grain size above 800°C and (iii) the evolution of a new lath martensite microstructure above 850°C. Conversely, transient heating via a laser was found to result in the decomposition of the as-received lath martensite structure into ferrite and Cr-rich carbide precipitates, accompanied by a significant increase in average grain size from 0.1-2 µm to 5-40 µm. Experimental analysis was supported by thermodynamic simulation of the equilibrium phase behaviour of Eurofer-97 in MatCalc and thermal finite element modelling of plasma-wall interaction heating on the water-cooled lithium-lead tritium breeding blanket concept in Comsol Multiphysics. Simulated thermal transients were found to significantly alter the microstructure of Eurofer-97 and the implications of this are discussed.</description><subject>Carbon dioxide</subject><subject>Carbon dioxide lasers</subject><subject>Chemical precipitation</subject><subject>Ferritic stainless steels</subject><subject>Finite element method</subject><subject>Fusion</subject><subject>Fusion reactors</subject><subject>Grain size</subject><subject>Heat treating</subject><subject>High temperature</subject><subject>High temperature effects</subject><subject>Ion beams</subject><subject>Laser beam heating</subject><subject>Lithium</subject><subject>Martensite</subject><subject>Martensitic stainless steels</subject><subject>Microstructure</subject><subject>Modelling</subject><subject>Particle size</subject><subject>Power plants</subject><subject>Precipitates</subject><subject>Thermal analysis</subject><subject>Thermal effects</subject><subject>Thermal simulation</subject><subject>Thermal transients</subject><subject>Thermodynamic equilibrium</subject><subject>Transient heating</subject><subject>Tritium</subject><issn>0022-3115</issn><issn>1873-4820</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLxDAUhYMoOI7-BCHgujXPPlYiw_iAATfjxk1I0xumZdqMSSr4703p7F1duJxz7rkfQveU5JTQ4rHP-3Eyg445I4zmVHJSiQu0olXJM1ExcolWhDCWcUrlNboJoSeEyJrIFfraHwCDtWBiwM5iO4XOjdiDNtF5HA_gB33E0esxdDDOonHe4qEz3oXoJxMnD7N1O3lnwWd1iUMEON6iK6uPAe7Oc40-X7b7zVu2-3h93zzvMsMrETMgprSM85pZyigHqZmRDaG8YSCFLApatk0q2NSFoIYXLbCkL4BDbbXWJV-jhyX35N33BCGq3k1-TCcVk7IuqRCiTiq5qObawYNVJ98N2v8qStSMUfXqjFHNGNWCMfmeFh-kF3468CqYBMJA2_kETbWu-yfhD5LSfrg</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Kumar, D.</creator><creator>Hargreaves, J.</creator><creator>Bharj, A.</creator><creator>Scorror, A.</creator><creator>Harding, L.M.</creator><creator>Dominguez-Andrade, H.</creator><creator>Holmes, R.</creator><creator>Burrows, R.</creator><creator>Dawson, H.</creator><creator>Warren, A.D.</creator><creator>Flewitt, P.E.J.</creator><creator>Martin, T.L.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>7ST</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-8559-7592</orcidid><orcidid>https://orcid.org/0000-0001-8903-7894</orcidid><orcidid>https://orcid.org/0000-0002-2783-8909</orcidid><orcidid>https://orcid.org/0000-0002-0564-3043</orcidid><orcidid>https://orcid.org/0000-0001-5932-0277</orcidid><orcidid>https://orcid.org/0000-0003-2963-6240</orcidid></search><sort><creationdate>202110</creationdate><title>The effects of fusion reactor thermal transients on the microstructure of Eurofer-97 steel</title><author>Kumar, D. ; Hargreaves, J. ; Bharj, A. ; Scorror, A. ; Harding, L.M. ; Dominguez-Andrade, H. ; Holmes, R. ; Burrows, R. ; Dawson, H. ; Warren, A.D. ; Flewitt, P.E.J. ; Martin, T.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-e0c7f23392f1213e5a2c5b013b2e5456617dbffeb9641c36de27f26e3e9faaa73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Carbon dioxide lasers</topic><topic>Chemical precipitation</topic><topic>Ferritic stainless steels</topic><topic>Finite element method</topic><topic>Fusion</topic><topic>Fusion reactors</topic><topic>Grain size</topic><topic>Heat treating</topic><topic>High temperature</topic><topic>High temperature effects</topic><topic>Ion beams</topic><topic>Laser beam heating</topic><topic>Lithium</topic><topic>Martensite</topic><topic>Martensitic stainless steels</topic><topic>Microstructure</topic><topic>Modelling</topic><topic>Particle size</topic><topic>Power plants</topic><topic>Precipitates</topic><topic>Thermal analysis</topic><topic>Thermal effects</topic><topic>Thermal simulation</topic><topic>Thermal transients</topic><topic>Thermodynamic equilibrium</topic><topic>Transient heating</topic><topic>Tritium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, D.</creatorcontrib><creatorcontrib>Hargreaves, J.</creatorcontrib><creatorcontrib>Bharj, A.</creatorcontrib><creatorcontrib>Scorror, A.</creatorcontrib><creatorcontrib>Harding, L.M.</creatorcontrib><creatorcontrib>Dominguez-Andrade, H.</creatorcontrib><creatorcontrib>Holmes, R.</creatorcontrib><creatorcontrib>Burrows, R.</creatorcontrib><creatorcontrib>Dawson, H.</creatorcontrib><creatorcontrib>Warren, A.D.</creatorcontrib><creatorcontrib>Flewitt, P.E.J.</creatorcontrib><creatorcontrib>Martin, T.L.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of nuclear materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, D.</au><au>Hargreaves, J.</au><au>Bharj, A.</au><au>Scorror, A.</au><au>Harding, L.M.</au><au>Dominguez-Andrade, H.</au><au>Holmes, R.</au><au>Burrows, R.</au><au>Dawson, H.</au><au>Warren, A.D.</au><au>Flewitt, P.E.J.</au><au>Martin, T.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of fusion reactor thermal transients on the microstructure of Eurofer-97 steel</atitle><jtitle>Journal of nuclear materials</jtitle><date>2021-10</date><risdate>2021</risdate><volume>554</volume><spage>153084</spage><pages>153084-</pages><artnum>153084</artnum><issn>0022-3115</issn><eissn>1873-4820</eissn><abstract>Plasma-wall interactions in a commercial-scale fusion power station may exert high transient thermal loads on plasma-facing surfaces, repeatedly subjecting underlying structural materials to high temperatures for short durations. Specimens of the reduced activation ferritic-martensitic steel Eurofer-97 were continuously aged at constant temperature in the range of 550°C to 950°C for up to 168 hours in a furnace to investigate the microstructural effects of short-term high temperature exposure. A CO2 laser was also used to repeatedly heat another specimen from 400°C to 850°C a total of 1,480 times over a period of 41 hours to explore transient heating effects. Microstructural changes were studied via scanning electron and focused ion beam microscopy and include (i) the coarsening of Cr-rich secondary phase precipitates when continuously heated above 750°C, (ii) an increase in average grain size above 800°C and (iii) the evolution of a new lath martensite microstructure above 850°C. Conversely, transient heating via a laser was found to result in the decomposition of the as-received lath martensite structure into ferrite and Cr-rich carbide precipitates, accompanied by a significant increase in average grain size from 0.1-2 µm to 5-40 µm. Experimental analysis was supported by thermodynamic simulation of the equilibrium phase behaviour of Eurofer-97 in MatCalc and thermal finite element modelling of plasma-wall interaction heating on the water-cooled lithium-lead tritium breeding blanket concept in Comsol Multiphysics. Simulated thermal transients were found to significantly alter the microstructure of Eurofer-97 and the implications of this are discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jnucmat.2021.153084</doi><orcidid>https://orcid.org/0000-0002-8559-7592</orcidid><orcidid>https://orcid.org/0000-0001-8903-7894</orcidid><orcidid>https://orcid.org/0000-0002-2783-8909</orcidid><orcidid>https://orcid.org/0000-0002-0564-3043</orcidid><orcidid>https://orcid.org/0000-0001-5932-0277</orcidid><orcidid>https://orcid.org/0000-0003-2963-6240</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3115 |
ispartof | Journal of nuclear materials, 2021-10, Vol.554, p.153084, Article 153084 |
issn | 0022-3115 1873-4820 |
language | eng |
recordid | cdi_proquest_journals_2559714449 |
source | Elsevier ScienceDirect Journals |
subjects | Carbon dioxide Carbon dioxide lasers Chemical precipitation Ferritic stainless steels Finite element method Fusion Fusion reactors Grain size Heat treating High temperature High temperature effects Ion beams Laser beam heating Lithium Martensite Martensitic stainless steels Microstructure Modelling Particle size Power plants Precipitates Thermal analysis Thermal effects Thermal simulation Thermal transients Thermodynamic equilibrium Transient heating Tritium |
title | The effects of fusion reactor thermal transients on the microstructure of Eurofer-97 steel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T06%3A03%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20fusion%20reactor%20thermal%20transients%20on%20the%20microstructure%20of%20Eurofer-97%20steel&rft.jtitle=Journal%20of%20nuclear%20materials&rft.au=Kumar,%20D.&rft.date=2021-10&rft.volume=554&rft.spage=153084&rft.pages=153084-&rft.artnum=153084&rft.issn=0022-3115&rft.eissn=1873-4820&rft_id=info:doi/10.1016/j.jnucmat.2021.153084&rft_dat=%3Cproquest_cross%3E2559714449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559714449&rft_id=info:pmid/&rft_els_id=S002231152100307X&rfr_iscdi=true |