Random Matrix Theory and Its Applications

This article reviews the important ideas behind random matrix theory (RMT), which has become a major tool in a variety of disciplines, including mathematical physics, number theory, combinatorics and multivariate statistical analysis. Much of the theory involves ensembles of random matrices that are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistical science 2021-08, Vol.36 (3), p.421-442
1. Verfasser: Izenman, Alan Julian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 442
container_issue 3
container_start_page 421
container_title Statistical science
container_volume 36
creator Izenman, Alan Julian
description This article reviews the important ideas behind random matrix theory (RMT), which has become a major tool in a variety of disciplines, including mathematical physics, number theory, combinatorics and multivariate statistical analysis. Much of the theory involves ensembles of random matrices that are governed by some probability distribution. Examples include Gaussian ensembles and Wishart–Laguerre ensembles. Interest has centered on studying the spectrum of random matrices, especially the extreme eigenvalues, suitably normalized, for a single Wishart matrix and for twoWishart matrices, for finite and infinite sample sizes in the real and complex cases. The Tracy–Widom Laws for the probability distribution of a normalized largest eigenvalue of a random matrix have become very prominent in RMT. Limiting probability distributions of eigenvalues of a certain random matrix lead to Wigner's Semicircle Law and Marc̆enko–Pastur's Quarter-Circle Law. Several applications of these results in RMT are described in this article.
doi_str_mv 10.1214/20-STS799
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2559711887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27286452</jstor_id><sourcerecordid>27286452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-35d87b1b82ecc3a73543ef2bb9dd7e4fd634baba6259999e2e5c553874eb819d3</originalsourceid><addsrcrecordid>eNo90FFLwzAQB_AgCtbpgx9AKPi0h2pySZrkcQyng4ng6nNI2hRbtqUmGbhvb6XivRwcP-6OP0K3BD8QIOwRcLGttkKpM5QBKWUhBePnKMNS0oIBFZfoKsYeY8xLwjI0fzeHxu_zV5NC951Xn86HUz7O8nWK-WIYdl1tUucP8RpdtGYX3c1fn6GP1VO1fCk2b8_r5WJT1EBVKihvpLDESnB1TY2gnFHXgrWqaYRjbVNSZo01JXA1lgPHa87p-KazkqiGztD9tHcI_uvoYtK9P4bDeFID50oQIqUY1XxSdfAxBtfqIXR7E06aYP2bhAaspyRGezfZPiYf_iEIkCXjQH8AHQBYnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559711887</pqid></control><display><type>article</type><title>Random Matrix Theory and Its Applications</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><creator>Izenman, Alan Julian</creator><creatorcontrib>Izenman, Alan Julian</creatorcontrib><description>This article reviews the important ideas behind random matrix theory (RMT), which has become a major tool in a variety of disciplines, including mathematical physics, number theory, combinatorics and multivariate statistical analysis. Much of the theory involves ensembles of random matrices that are governed by some probability distribution. Examples include Gaussian ensembles and Wishart–Laguerre ensembles. Interest has centered on studying the spectrum of random matrices, especially the extreme eigenvalues, suitably normalized, for a single Wishart matrix and for twoWishart matrices, for finite and infinite sample sizes in the real and complex cases. The Tracy–Widom Laws for the probability distribution of a normalized largest eigenvalue of a random matrix have become very prominent in RMT. Limiting probability distributions of eigenvalues of a certain random matrix lead to Wigner's Semicircle Law and Marc̆enko–Pastur's Quarter-Circle Law. Several applications of these results in RMT are described in this article.</description><identifier>ISSN: 0883-4237</identifier><identifier>EISSN: 2168-8745</identifier><identifier>DOI: 10.1214/20-STS799</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Combinatorial analysis ; Eigenvalues ; Legislation ; Mathematical analysis ; Matrix ; Matrix theory ; Multivariate statistical analysis ; Normal distribution ; Number theory ; Probability ; Probability distribution ; Random variables ; Statistical analysis</subject><ispartof>Statistical science, 2021-08, Vol.36 (3), p.421-442</ispartof><rights>Institute of Mathematical Statistics, 2021</rights><rights>Copyright Institute of Mathematical Statistics Aug 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c239t-35d87b1b82ecc3a73543ef2bb9dd7e4fd634baba6259999e2e5c553874eb819d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Izenman, Alan Julian</creatorcontrib><title>Random Matrix Theory and Its Applications</title><title>Statistical science</title><description>This article reviews the important ideas behind random matrix theory (RMT), which has become a major tool in a variety of disciplines, including mathematical physics, number theory, combinatorics and multivariate statistical analysis. Much of the theory involves ensembles of random matrices that are governed by some probability distribution. Examples include Gaussian ensembles and Wishart–Laguerre ensembles. Interest has centered on studying the spectrum of random matrices, especially the extreme eigenvalues, suitably normalized, for a single Wishart matrix and for twoWishart matrices, for finite and infinite sample sizes in the real and complex cases. The Tracy–Widom Laws for the probability distribution of a normalized largest eigenvalue of a random matrix have become very prominent in RMT. Limiting probability distributions of eigenvalues of a certain random matrix lead to Wigner's Semicircle Law and Marc̆enko–Pastur's Quarter-Circle Law. Several applications of these results in RMT are described in this article.</description><subject>Combinatorial analysis</subject><subject>Eigenvalues</subject><subject>Legislation</subject><subject>Mathematical analysis</subject><subject>Matrix</subject><subject>Matrix theory</subject><subject>Multivariate statistical analysis</subject><subject>Normal distribution</subject><subject>Number theory</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Statistical analysis</subject><issn>0883-4237</issn><issn>2168-8745</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo90FFLwzAQB_AgCtbpgx9AKPi0h2pySZrkcQyng4ng6nNI2hRbtqUmGbhvb6XivRwcP-6OP0K3BD8QIOwRcLGttkKpM5QBKWUhBePnKMNS0oIBFZfoKsYeY8xLwjI0fzeHxu_zV5NC951Xn86HUz7O8nWK-WIYdl1tUucP8RpdtGYX3c1fn6GP1VO1fCk2b8_r5WJT1EBVKihvpLDESnB1TY2gnFHXgrWqaYRjbVNSZo01JXA1lgPHa87p-KazkqiGztD9tHcI_uvoYtK9P4bDeFID50oQIqUY1XxSdfAxBtfqIXR7E06aYP2bhAaspyRGezfZPiYf_iEIkCXjQH8AHQBYnA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Izenman, Alan Julian</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210801</creationdate><title>Random Matrix Theory and Its Applications</title><author>Izenman, Alan Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-35d87b1b82ecc3a73543ef2bb9dd7e4fd634baba6259999e2e5c553874eb819d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Combinatorial analysis</topic><topic>Eigenvalues</topic><topic>Legislation</topic><topic>Mathematical analysis</topic><topic>Matrix</topic><topic>Matrix theory</topic><topic>Multivariate statistical analysis</topic><topic>Normal distribution</topic><topic>Number theory</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izenman, Alan Julian</creatorcontrib><collection>CrossRef</collection><jtitle>Statistical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izenman, Alan Julian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Matrix Theory and Its Applications</atitle><jtitle>Statistical science</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>36</volume><issue>3</issue><spage>421</spage><epage>442</epage><pages>421-442</pages><issn>0883-4237</issn><eissn>2168-8745</eissn><abstract>This article reviews the important ideas behind random matrix theory (RMT), which has become a major tool in a variety of disciplines, including mathematical physics, number theory, combinatorics and multivariate statistical analysis. Much of the theory involves ensembles of random matrices that are governed by some probability distribution. Examples include Gaussian ensembles and Wishart–Laguerre ensembles. Interest has centered on studying the spectrum of random matrices, especially the extreme eigenvalues, suitably normalized, for a single Wishart matrix and for twoWishart matrices, for finite and infinite sample sizes in the real and complex cases. The Tracy–Widom Laws for the probability distribution of a normalized largest eigenvalue of a random matrix have become very prominent in RMT. Limiting probability distributions of eigenvalues of a certain random matrix lead to Wigner's Semicircle Law and Marc̆enko–Pastur's Quarter-Circle Law. Several applications of these results in RMT are described in this article.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/20-STS799</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0883-4237
ispartof Statistical science, 2021-08, Vol.36 (3), p.421-442
issn 0883-4237
2168-8745
language eng
recordid cdi_proquest_journals_2559711887
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete
subjects Combinatorial analysis
Eigenvalues
Legislation
Mathematical analysis
Matrix
Matrix theory
Multivariate statistical analysis
Normal distribution
Number theory
Probability
Probability distribution
Random variables
Statistical analysis
title Random Matrix Theory and Its Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Matrix%20Theory%20and%20Its%20Applications&rft.jtitle=Statistical%20science&rft.au=Izenman,%20Alan%20Julian&rft.date=2021-08-01&rft.volume=36&rft.issue=3&rft.spage=421&rft.epage=442&rft.pages=421-442&rft.issn=0883-4237&rft.eissn=2168-8745&rft_id=info:doi/10.1214/20-STS799&rft_dat=%3Cjstor_proqu%3E27286452%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559711887&rft_id=info:pmid/&rft_jstor_id=27286452&rfr_iscdi=true