Random Matrix Theory and Its Applications
This article reviews the important ideas behind random matrix theory (RMT), which has become a major tool in a variety of disciplines, including mathematical physics, number theory, combinatorics and multivariate statistical analysis. Much of the theory involves ensembles of random matrices that are...
Gespeichert in:
Veröffentlicht in: | Statistical science 2021-08, Vol.36 (3), p.421-442 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 442 |
---|---|
container_issue | 3 |
container_start_page | 421 |
container_title | Statistical science |
container_volume | 36 |
creator | Izenman, Alan Julian |
description | This article reviews the important ideas behind random matrix theory (RMT), which has become a major tool in a variety of disciplines, including mathematical physics, number theory, combinatorics and multivariate statistical analysis. Much of the theory involves ensembles of random matrices that are governed by some probability distribution. Examples include Gaussian ensembles and Wishart–Laguerre ensembles. Interest has centered on studying the spectrum of random matrices, especially the extreme eigenvalues, suitably normalized, for a single Wishart matrix and for twoWishart matrices, for finite and infinite sample sizes in the real and complex cases. The Tracy–Widom Laws for the probability distribution of a normalized largest eigenvalue of a random matrix have become very prominent in RMT. Limiting probability distributions of eigenvalues of a certain random matrix lead to Wigner's Semicircle Law and Marc̆enko–Pastur's Quarter-Circle Law. Several applications of these results in RMT are described in this article. |
doi_str_mv | 10.1214/20-STS799 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2559711887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27286452</jstor_id><sourcerecordid>27286452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c239t-35d87b1b82ecc3a73543ef2bb9dd7e4fd634baba6259999e2e5c553874eb819d3</originalsourceid><addsrcrecordid>eNo90FFLwzAQB_AgCtbpgx9AKPi0h2pySZrkcQyng4ng6nNI2hRbtqUmGbhvb6XivRwcP-6OP0K3BD8QIOwRcLGttkKpM5QBKWUhBePnKMNS0oIBFZfoKsYeY8xLwjI0fzeHxu_zV5NC951Xn86HUz7O8nWK-WIYdl1tUucP8RpdtGYX3c1fn6GP1VO1fCk2b8_r5WJT1EBVKihvpLDESnB1TY2gnFHXgrWqaYRjbVNSZo01JXA1lgPHa87p-KazkqiGztD9tHcI_uvoYtK9P4bDeFID50oQIqUY1XxSdfAxBtfqIXR7E06aYP2bhAaspyRGezfZPiYf_iEIkCXjQH8AHQBYnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559711887</pqid></control><display><type>article</type><title>Random Matrix Theory and Its Applications</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Project Euclid Complete</source><creator>Izenman, Alan Julian</creator><creatorcontrib>Izenman, Alan Julian</creatorcontrib><description>This article reviews the important ideas behind random matrix theory (RMT), which has become a major tool in a variety of disciplines, including mathematical physics, number theory, combinatorics and multivariate statistical analysis. Much of the theory involves ensembles of random matrices that are governed by some probability distribution. Examples include Gaussian ensembles and Wishart–Laguerre ensembles. Interest has centered on studying the spectrum of random matrices, especially the extreme eigenvalues, suitably normalized, for a single Wishart matrix and for twoWishart matrices, for finite and infinite sample sizes in the real and complex cases. The Tracy–Widom Laws for the probability distribution of a normalized largest eigenvalue of a random matrix have become very prominent in RMT. Limiting probability distributions of eigenvalues of a certain random matrix lead to Wigner's Semicircle Law and Marc̆enko–Pastur's Quarter-Circle Law. Several applications of these results in RMT are described in this article.</description><identifier>ISSN: 0883-4237</identifier><identifier>EISSN: 2168-8745</identifier><identifier>DOI: 10.1214/20-STS799</identifier><language>eng</language><publisher>Hayward: Institute of Mathematical Statistics</publisher><subject>Combinatorial analysis ; Eigenvalues ; Legislation ; Mathematical analysis ; Matrix ; Matrix theory ; Multivariate statistical analysis ; Normal distribution ; Number theory ; Probability ; Probability distribution ; Random variables ; Statistical analysis</subject><ispartof>Statistical science, 2021-08, Vol.36 (3), p.421-442</ispartof><rights>Institute of Mathematical Statistics, 2021</rights><rights>Copyright Institute of Mathematical Statistics Aug 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c239t-35d87b1b82ecc3a73543ef2bb9dd7e4fd634baba6259999e2e5c553874eb819d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Izenman, Alan Julian</creatorcontrib><title>Random Matrix Theory and Its Applications</title><title>Statistical science</title><description>This article reviews the important ideas behind random matrix theory (RMT), which has become a major tool in a variety of disciplines, including mathematical physics, number theory, combinatorics and multivariate statistical analysis. Much of the theory involves ensembles of random matrices that are governed by some probability distribution. Examples include Gaussian ensembles and Wishart–Laguerre ensembles. Interest has centered on studying the spectrum of random matrices, especially the extreme eigenvalues, suitably normalized, for a single Wishart matrix and for twoWishart matrices, for finite and infinite sample sizes in the real and complex cases. The Tracy–Widom Laws for the probability distribution of a normalized largest eigenvalue of a random matrix have become very prominent in RMT. Limiting probability distributions of eigenvalues of a certain random matrix lead to Wigner's Semicircle Law and Marc̆enko–Pastur's Quarter-Circle Law. Several applications of these results in RMT are described in this article.</description><subject>Combinatorial analysis</subject><subject>Eigenvalues</subject><subject>Legislation</subject><subject>Mathematical analysis</subject><subject>Matrix</subject><subject>Matrix theory</subject><subject>Multivariate statistical analysis</subject><subject>Normal distribution</subject><subject>Number theory</subject><subject>Probability</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Statistical analysis</subject><issn>0883-4237</issn><issn>2168-8745</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo90FFLwzAQB_AgCtbpgx9AKPi0h2pySZrkcQyng4ng6nNI2hRbtqUmGbhvb6XivRwcP-6OP0K3BD8QIOwRcLGttkKpM5QBKWUhBePnKMNS0oIBFZfoKsYeY8xLwjI0fzeHxu_zV5NC951Xn86HUz7O8nWK-WIYdl1tUucP8RpdtGYX3c1fn6GP1VO1fCk2b8_r5WJT1EBVKihvpLDESnB1TY2gnFHXgrWqaYRjbVNSZo01JXA1lgPHa87p-KazkqiGztD9tHcI_uvoYtK9P4bDeFID50oQIqUY1XxSdfAxBtfqIXR7E06aYP2bhAaspyRGezfZPiYf_iEIkCXjQH8AHQBYnA</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Izenman, Alan Julian</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210801</creationdate><title>Random Matrix Theory and Its Applications</title><author>Izenman, Alan Julian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c239t-35d87b1b82ecc3a73543ef2bb9dd7e4fd634baba6259999e2e5c553874eb819d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Combinatorial analysis</topic><topic>Eigenvalues</topic><topic>Legislation</topic><topic>Mathematical analysis</topic><topic>Matrix</topic><topic>Matrix theory</topic><topic>Multivariate statistical analysis</topic><topic>Normal distribution</topic><topic>Number theory</topic><topic>Probability</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Izenman, Alan Julian</creatorcontrib><collection>CrossRef</collection><jtitle>Statistical science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Izenman, Alan Julian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Matrix Theory and Its Applications</atitle><jtitle>Statistical science</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>36</volume><issue>3</issue><spage>421</spage><epage>442</epage><pages>421-442</pages><issn>0883-4237</issn><eissn>2168-8745</eissn><abstract>This article reviews the important ideas behind random matrix theory (RMT), which has become a major tool in a variety of disciplines, including mathematical physics, number theory, combinatorics and multivariate statistical analysis. Much of the theory involves ensembles of random matrices that are governed by some probability distribution. Examples include Gaussian ensembles and Wishart–Laguerre ensembles. Interest has centered on studying the spectrum of random matrices, especially the extreme eigenvalues, suitably normalized, for a single Wishart matrix and for twoWishart matrices, for finite and infinite sample sizes in the real and complex cases. The Tracy–Widom Laws for the probability distribution of a normalized largest eigenvalue of a random matrix have become very prominent in RMT. Limiting probability distributions of eigenvalues of a certain random matrix lead to Wigner's Semicircle Law and Marc̆enko–Pastur's Quarter-Circle Law. Several applications of these results in RMT are described in this article.</abstract><cop>Hayward</cop><pub>Institute of Mathematical Statistics</pub><doi>10.1214/20-STS799</doi><tpages>22</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0883-4237 |
ispartof | Statistical science, 2021-08, Vol.36 (3), p.421-442 |
issn | 0883-4237 2168-8745 |
language | eng |
recordid | cdi_proquest_journals_2559711887 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Project Euclid Complete |
subjects | Combinatorial analysis Eigenvalues Legislation Mathematical analysis Matrix Matrix theory Multivariate statistical analysis Normal distribution Number theory Probability Probability distribution Random variables Statistical analysis |
title | Random Matrix Theory and Its Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A25%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Matrix%20Theory%20and%20Its%20Applications&rft.jtitle=Statistical%20science&rft.au=Izenman,%20Alan%20Julian&rft.date=2021-08-01&rft.volume=36&rft.issue=3&rft.spage=421&rft.epage=442&rft.pages=421-442&rft.issn=0883-4237&rft.eissn=2168-8745&rft_id=info:doi/10.1214/20-STS799&rft_dat=%3Cjstor_proqu%3E27286452%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559711887&rft_id=info:pmid/&rft_jstor_id=27286452&rfr_iscdi=true |