Cu/Cu2O Interconnected Porous Aerogel Catalyst for Highly Productive Electrosynthesis of Ethanol from CO2

Use of Cu and Cu+ is one of the most promising approaches for the production of C2 products by the electrocatalytic CO2 reduction reaction (CO2RR) because it can facilitate CO2 activation and CC dimerization. However, the selective electrosynthesis of C2+ products on Cu0Cu+ interfaces is criticall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-08, Vol.31 (32), p.n/a
Hauptverfasser: Kim, Chansol, Cho, Kyeong Min, Park, Kangho, Kim, Ju Ye, Yun, Geun‐Tae, Toma, Francesca M., Gereige, Issam, Jung, Hee‐Tae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page
container_title Advanced functional materials
container_volume 31
creator Kim, Chansol
Cho, Kyeong Min
Park, Kangho
Kim, Ju Ye
Yun, Geun‐Tae
Toma, Francesca M.
Gereige, Issam
Jung, Hee‐Tae
description Use of Cu and Cu+ is one of the most promising approaches for the production of C2 products by the electrocatalytic CO2 reduction reaction (CO2RR) because it can facilitate CO2 activation and CC dimerization. However, the selective electrosynthesis of C2+ products on Cu0Cu+ interfaces is critically limited due to the low electrocatalytic production of ethanol relative to ethylene. In this study, a novel porous Cu/Cu2O aerogel network is introduced to afford high ethanol productivity by the electrocatalytic CO2RR. The aerogel is synthesized by a simple chemical redox reaction of a precursor and a reducing agent. CO2RR results reveal that the Cu/Cu2O aerogel produces ethanol as the major product, exhibiting a Faradaic efficiency (FEEtOH) of 41.2% and a partial current density (JEtOH) of 32.55 mA cm−2 in an H‐cell reactor. This is the best electrosynthesis performance for ethanol production reported thus far. Electron microscopy and electrochemical analysis results reveal that this dramatic increase in the electrosynthesis performance for ethanol can be attributed to a large number of Cu0Cu+ interfaces and an increase of the local pH in the confined porous aerogel network structure with a high‐surface‐area. A Cu/Cu2O interconnected porous aerogel network exhibits remarkably high selectivity and productivity in ethanol electrosynthesis from CO2 (41.2% and 32.55mA cm−2 in an H‐cell). This high performance arises from a large population of Cu0Cu+ interfaces in the confined porous structure with a high surface area. This aerogel electrocatalyst is thought to be an appealing model for the commercial electrosynthesis of ethanol from CO2.
doi_str_mv 10.1002/adfm.202102142
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2559690818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559690818</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2332-259a893fc8c14d1f9f49e7da2ae3c9e1abe1a1c0e381adecce5ddbcfe962619e3</originalsourceid><addsrcrecordid>eNo9kM1rAjEQxUNpodb22nOg59V87K6bo2y1ChY9tNBbiMlEV9aNTbIt-993xSLMY2bgzRv4IfRMyYgSwsbK2OOIEUb7StkNGtCc5gknrLi9zvTrHj2EcCCETiY8HaCqbMdly9Z42UTw2jUN6AgGb5x3bcBT8G4HNS5VVHUXIrbO40W129cd3nhnWh2rH8Czur_yLnRN3EOoAnYWz-JeNa7G1rsjLtfsEd1ZVQd4-u9D9DmffZSLZLV-W5bTVXJinLOEZUIVgltdaJoaaoVNBUyMYgq4FkDVthfVBHhBlQGtITNmqy2InOVUAB-il0vuybvvFkKUB9f6pn8pWZaJXJCCFr1LXFy_VQ2dPPnqqHwnKZFnlvLMUl5Zyunr_P268T8MUWxN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559690818</pqid></control><display><type>article</type><title>Cu/Cu2O Interconnected Porous Aerogel Catalyst for Highly Productive Electrosynthesis of Ethanol from CO2</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kim, Chansol ; Cho, Kyeong Min ; Park, Kangho ; Kim, Ju Ye ; Yun, Geun‐Tae ; Toma, Francesca M. ; Gereige, Issam ; Jung, Hee‐Tae</creator><creatorcontrib>Kim, Chansol ; Cho, Kyeong Min ; Park, Kangho ; Kim, Ju Ye ; Yun, Geun‐Tae ; Toma, Francesca M. ; Gereige, Issam ; Jung, Hee‐Tae</creatorcontrib><description>Use of Cu and Cu+ is one of the most promising approaches for the production of C2 products by the electrocatalytic CO2 reduction reaction (CO2RR) because it can facilitate CO2 activation and CC dimerization. However, the selective electrosynthesis of C2+ products on Cu0Cu+ interfaces is critically limited due to the low electrocatalytic production of ethanol relative to ethylene. In this study, a novel porous Cu/Cu2O aerogel network is introduced to afford high ethanol productivity by the electrocatalytic CO2RR. The aerogel is synthesized by a simple chemical redox reaction of a precursor and a reducing agent. CO2RR results reveal that the Cu/Cu2O aerogel produces ethanol as the major product, exhibiting a Faradaic efficiency (FEEtOH) of 41.2% and a partial current density (JEtOH) of 32.55 mA cm−2 in an H‐cell reactor. This is the best electrosynthesis performance for ethanol production reported thus far. Electron microscopy and electrochemical analysis results reveal that this dramatic increase in the electrosynthesis performance for ethanol can be attributed to a large number of Cu0Cu+ interfaces and an increase of the local pH in the confined porous aerogel network structure with a high‐surface‐area. A Cu/Cu2O interconnected porous aerogel network exhibits remarkably high selectivity and productivity in ethanol electrosynthesis from CO2 (41.2% and 32.55mA cm−2 in an H‐cell). This high performance arises from a large population of Cu0Cu+ interfaces in the confined porous structure with a high surface area. This aerogel electrocatalyst is thought to be an appealing model for the commercial electrosynthesis of ethanol from CO2.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202102142</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Aerogels ; Carbon dioxide ; Chemical reduction ; Chemical synthesis ; copper oxide ; Copper oxides ; Dimerization ; electrocatalysts ; Electrochemical analysis ; electrosynthesis ; Ethanol ; Materials science ; Redox reactions ; Reducing agents</subject><ispartof>Advanced functional materials, 2021-08, Vol.31 (32), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5727-6732</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202102142$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202102142$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Kim, Chansol</creatorcontrib><creatorcontrib>Cho, Kyeong Min</creatorcontrib><creatorcontrib>Park, Kangho</creatorcontrib><creatorcontrib>Kim, Ju Ye</creatorcontrib><creatorcontrib>Yun, Geun‐Tae</creatorcontrib><creatorcontrib>Toma, Francesca M.</creatorcontrib><creatorcontrib>Gereige, Issam</creatorcontrib><creatorcontrib>Jung, Hee‐Tae</creatorcontrib><title>Cu/Cu2O Interconnected Porous Aerogel Catalyst for Highly Productive Electrosynthesis of Ethanol from CO2</title><title>Advanced functional materials</title><description>Use of Cu and Cu+ is one of the most promising approaches for the production of C2 products by the electrocatalytic CO2 reduction reaction (CO2RR) because it can facilitate CO2 activation and CC dimerization. However, the selective electrosynthesis of C2+ products on Cu0Cu+ interfaces is critically limited due to the low electrocatalytic production of ethanol relative to ethylene. In this study, a novel porous Cu/Cu2O aerogel network is introduced to afford high ethanol productivity by the electrocatalytic CO2RR. The aerogel is synthesized by a simple chemical redox reaction of a precursor and a reducing agent. CO2RR results reveal that the Cu/Cu2O aerogel produces ethanol as the major product, exhibiting a Faradaic efficiency (FEEtOH) of 41.2% and a partial current density (JEtOH) of 32.55 mA cm−2 in an H‐cell reactor. This is the best electrosynthesis performance for ethanol production reported thus far. Electron microscopy and electrochemical analysis results reveal that this dramatic increase in the electrosynthesis performance for ethanol can be attributed to a large number of Cu0Cu+ interfaces and an increase of the local pH in the confined porous aerogel network structure with a high‐surface‐area. A Cu/Cu2O interconnected porous aerogel network exhibits remarkably high selectivity and productivity in ethanol electrosynthesis from CO2 (41.2% and 32.55mA cm−2 in an H‐cell). This high performance arises from a large population of Cu0Cu+ interfaces in the confined porous structure with a high surface area. This aerogel electrocatalyst is thought to be an appealing model for the commercial electrosynthesis of ethanol from CO2.</description><subject>Aerogels</subject><subject>Carbon dioxide</subject><subject>Chemical reduction</subject><subject>Chemical synthesis</subject><subject>copper oxide</subject><subject>Copper oxides</subject><subject>Dimerization</subject><subject>electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>electrosynthesis</subject><subject>Ethanol</subject><subject>Materials science</subject><subject>Redox reactions</subject><subject>Reducing agents</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1rAjEQxUNpodb22nOg59V87K6bo2y1ChY9tNBbiMlEV9aNTbIt-993xSLMY2bgzRv4IfRMyYgSwsbK2OOIEUb7StkNGtCc5gknrLi9zvTrHj2EcCCETiY8HaCqbMdly9Z42UTw2jUN6AgGb5x3bcBT8G4HNS5VVHUXIrbO40W129cd3nhnWh2rH8Czur_yLnRN3EOoAnYWz-JeNa7G1rsjLtfsEd1ZVQd4-u9D9DmffZSLZLV-W5bTVXJinLOEZUIVgltdaJoaaoVNBUyMYgq4FkDVthfVBHhBlQGtITNmqy2InOVUAB-il0vuybvvFkKUB9f6pn8pWZaJXJCCFr1LXFy_VQ2dPPnqqHwnKZFnlvLMUl5Zyunr_P268T8MUWxN</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Kim, Chansol</creator><creator>Cho, Kyeong Min</creator><creator>Park, Kangho</creator><creator>Kim, Ju Ye</creator><creator>Yun, Geun‐Tae</creator><creator>Toma, Francesca M.</creator><creator>Gereige, Issam</creator><creator>Jung, Hee‐Tae</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5727-6732</orcidid></search><sort><creationdate>20210801</creationdate><title>Cu/Cu2O Interconnected Porous Aerogel Catalyst for Highly Productive Electrosynthesis of Ethanol from CO2</title><author>Kim, Chansol ; Cho, Kyeong Min ; Park, Kangho ; Kim, Ju Ye ; Yun, Geun‐Tae ; Toma, Francesca M. ; Gereige, Issam ; Jung, Hee‐Tae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2332-259a893fc8c14d1f9f49e7da2ae3c9e1abe1a1c0e381adecce5ddbcfe962619e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerogels</topic><topic>Carbon dioxide</topic><topic>Chemical reduction</topic><topic>Chemical synthesis</topic><topic>copper oxide</topic><topic>Copper oxides</topic><topic>Dimerization</topic><topic>electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>electrosynthesis</topic><topic>Ethanol</topic><topic>Materials science</topic><topic>Redox reactions</topic><topic>Reducing agents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Chansol</creatorcontrib><creatorcontrib>Cho, Kyeong Min</creatorcontrib><creatorcontrib>Park, Kangho</creatorcontrib><creatorcontrib>Kim, Ju Ye</creatorcontrib><creatorcontrib>Yun, Geun‐Tae</creatorcontrib><creatorcontrib>Toma, Francesca M.</creatorcontrib><creatorcontrib>Gereige, Issam</creatorcontrib><creatorcontrib>Jung, Hee‐Tae</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Chansol</au><au>Cho, Kyeong Min</au><au>Park, Kangho</au><au>Kim, Ju Ye</au><au>Yun, Geun‐Tae</au><au>Toma, Francesca M.</au><au>Gereige, Issam</au><au>Jung, Hee‐Tae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cu/Cu2O Interconnected Porous Aerogel Catalyst for Highly Productive Electrosynthesis of Ethanol from CO2</atitle><jtitle>Advanced functional materials</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>32</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Use of Cu and Cu+ is one of the most promising approaches for the production of C2 products by the electrocatalytic CO2 reduction reaction (CO2RR) because it can facilitate CO2 activation and CC dimerization. However, the selective electrosynthesis of C2+ products on Cu0Cu+ interfaces is critically limited due to the low electrocatalytic production of ethanol relative to ethylene. In this study, a novel porous Cu/Cu2O aerogel network is introduced to afford high ethanol productivity by the electrocatalytic CO2RR. The aerogel is synthesized by a simple chemical redox reaction of a precursor and a reducing agent. CO2RR results reveal that the Cu/Cu2O aerogel produces ethanol as the major product, exhibiting a Faradaic efficiency (FEEtOH) of 41.2% and a partial current density (JEtOH) of 32.55 mA cm−2 in an H‐cell reactor. This is the best electrosynthesis performance for ethanol production reported thus far. Electron microscopy and electrochemical analysis results reveal that this dramatic increase in the electrosynthesis performance for ethanol can be attributed to a large number of Cu0Cu+ interfaces and an increase of the local pH in the confined porous aerogel network structure with a high‐surface‐area. A Cu/Cu2O interconnected porous aerogel network exhibits remarkably high selectivity and productivity in ethanol electrosynthesis from CO2 (41.2% and 32.55mA cm−2 in an H‐cell). This high performance arises from a large population of Cu0Cu+ interfaces in the confined porous structure with a high surface area. This aerogel electrocatalyst is thought to be an appealing model for the commercial electrosynthesis of ethanol from CO2.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202102142</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5727-6732</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-08, Vol.31 (32), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2559690818
source Wiley Online Library Journals Frontfile Complete
subjects Aerogels
Carbon dioxide
Chemical reduction
Chemical synthesis
copper oxide
Copper oxides
Dimerization
electrocatalysts
Electrochemical analysis
electrosynthesis
Ethanol
Materials science
Redox reactions
Reducing agents
title Cu/Cu2O Interconnected Porous Aerogel Catalyst for Highly Productive Electrosynthesis of Ethanol from CO2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A47%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cu/Cu2O%20Interconnected%20Porous%20Aerogel%20Catalyst%20for%20Highly%20Productive%20Electrosynthesis%20of%20Ethanol%20from%20CO2&rft.jtitle=Advanced%20functional%20materials&rft.au=Kim,%20Chansol&rft.date=2021-08-01&rft.volume=31&rft.issue=32&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202102142&rft_dat=%3Cproquest_wiley%3E2559690818%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559690818&rft_id=info:pmid/&rfr_iscdi=true