Architecting Freestanding Sulfur Cathodes for Superior Room‐Temperature Na–S Batteries

Room‐temperature sodium–sulfur (RT Na–S) batteries have attracted extensive attention because of their low cost and high specific energy. RT Na–S batteries, however, usually suffer from sluggish reaction kinetics, low reversible capacity, and short lifespans. Herein, it is shown that chain‐mail cata...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-08, Vol.31 (32), p.n/a
Hauptverfasser: Yang, Huiling, Zhou, Si, Zhang, Bin‐Wei, Chu, Sheng‐Qi, Guo, Haipeng, Gu, Qin‐Fen, Liu, Hanwen, Lei, Yaojie, Konstantinov, Konstantin, Wang, Yun‐Xiao, Chou, Shu‐Lei, Liu, Hua‐Kun, Dou, Shi‐Xue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page
container_title Advanced functional materials
container_volume 31
creator Yang, Huiling
Zhou, Si
Zhang, Bin‐Wei
Chu, Sheng‐Qi
Guo, Haipeng
Gu, Qin‐Fen
Liu, Hanwen
Lei, Yaojie
Konstantinov, Konstantin
Wang, Yun‐Xiao
Chou, Shu‐Lei
Liu, Hua‐Kun
Dou, Shi‐Xue
description Room‐temperature sodium–sulfur (RT Na–S) batteries have attracted extensive attention because of their low cost and high specific energy. RT Na–S batteries, however, usually suffer from sluggish reaction kinetics, low reversible capacity, and short lifespans. Herein, it is shown that chain‐mail catalysts, consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles (Co@PCNFs), can activate sulfur via electron engineering. The chain‐mail catalysts Co@PCNFs with a micrograde hierarchical structure as a freestanding sulfur cathode (Co@PCNFs/S) can provide space for high mass loading of sulfur and polysulfides. The electrons can rapidly transfer from chain‐mail catalysts to sulfur and polysulfides during discharge–charge processes, therefore boosting its conversion kinetics. As a result, this freestanding Co@PCNFs/S cathode achieves a high sulfur loading of 2.1 ± 0.2 mg cm−2, delivering a high reversible capacity of 398 mA h g−1 at 0.5 C (1 C = 1675 mA g−1) over 600 cycles and superior rate capability of an average capacity of 240 mA h g−1 at 5 C. Experimental results, combined with density functional theory calculations, demonstrate that the Co@PCNFs/S can efficiently improve the conversion kinetics between the polysulfides and Na2S via transferring electrons from Co to them, thereby realizing efficient sulfur redox reactions. A chain‐mail catalyst consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles is developed for a freestanding sulfur cathode (Co@PCNFs/S) in room‐temperature sodium–sulfur batteries. The electron engineering in Co@PCNFs/S can transfer electrons from Co@PCNFs to sulfur and polysulfides, which activates reactivity and the conversion kinetics of the S cathode, leading to long cycling stability and high‐rate capacity.
doi_str_mv 10.1002/adfm.202102280
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559690591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559690591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-894e14671c521f013c1d9cb712277d4ed391892b10fe651e4ad57b3daf879ad83</originalsourceid><addsrcrecordid>eNqFkM9KAzEQxoMoWKtXzwuet2ayf7I51uqqUBVsBfES0s3Ebul2a7KL9NZHEHzDPokplXr0NN8Mv29m-Ag5B9oDStml0qbqMcqAMpbRA9KBFNIwoiw73Gt4PSYnzs0oBc6juEPe-raYlg0WTbl4D3KL6Bq10Ntm1M5Na4OBaqa1RheY2vrZEm3pxXNdV5v11xgrP1BNazF4VJv19yi4Uk3jGXSn5MioucOz39olL_nNeHAXDp9u7wf9YVhECadhJmKEOOVQJAwMhagALYoJB8Y41zHqSEAm2ASowTQBjJVO-CTSymRcKJ1FXXKx27u09Ufr_5ezurULf1KyJBGpoIkAT_V2VGFr5ywaubRlpexKApXb_OQ2P7nPzxvEzvBZznH1Dy371_nDn_cHwC12JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559690591</pqid></control><display><type>article</type><title>Architecting Freestanding Sulfur Cathodes for Superior Room‐Temperature Na–S Batteries</title><source>Wiley Online Library All Journals</source><creator>Yang, Huiling ; Zhou, Si ; Zhang, Bin‐Wei ; Chu, Sheng‐Qi ; Guo, Haipeng ; Gu, Qin‐Fen ; Liu, Hanwen ; Lei, Yaojie ; Konstantinov, Konstantin ; Wang, Yun‐Xiao ; Chou, Shu‐Lei ; Liu, Hua‐Kun ; Dou, Shi‐Xue</creator><creatorcontrib>Yang, Huiling ; Zhou, Si ; Zhang, Bin‐Wei ; Chu, Sheng‐Qi ; Guo, Haipeng ; Gu, Qin‐Fen ; Liu, Hanwen ; Lei, Yaojie ; Konstantinov, Konstantin ; Wang, Yun‐Xiao ; Chou, Shu‐Lei ; Liu, Hua‐Kun ; Dou, Shi‐Xue</creatorcontrib><description>Room‐temperature sodium–sulfur (RT Na–S) batteries have attracted extensive attention because of their low cost and high specific energy. RT Na–S batteries, however, usually suffer from sluggish reaction kinetics, low reversible capacity, and short lifespans. Herein, it is shown that chain‐mail catalysts, consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles (Co@PCNFs), can activate sulfur via electron engineering. The chain‐mail catalysts Co@PCNFs with a micrograde hierarchical structure as a freestanding sulfur cathode (Co@PCNFs/S) can provide space for high mass loading of sulfur and polysulfides. The electrons can rapidly transfer from chain‐mail catalysts to sulfur and polysulfides during discharge–charge processes, therefore boosting its conversion kinetics. As a result, this freestanding Co@PCNFs/S cathode achieves a high sulfur loading of 2.1 ± 0.2 mg cm−2, delivering a high reversible capacity of 398 mA h g−1 at 0.5 C (1 C = 1675 mA g−1) over 600 cycles and superior rate capability of an average capacity of 240 mA h g−1 at 5 C. Experimental results, combined with density functional theory calculations, demonstrate that the Co@PCNFs/S can efficiently improve the conversion kinetics between the polysulfides and Na2S via transferring electrons from Co to them, thereby realizing efficient sulfur redox reactions. A chain‐mail catalyst consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles is developed for a freestanding sulfur cathode (Co@PCNFs/S) in room‐temperature sodium–sulfur batteries. The electron engineering in Co@PCNFs/S can transfer electrons from Co@PCNFs to sulfur and polysulfides, which activates reactivity and the conversion kinetics of the S cathode, leading to long cycling stability and high‐rate capacity.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202102280</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carbon fibers ; Catalysts ; Cathodes ; Chains ; chain‐mail catalysts ; Conversion ; Density functional theory ; electron engineering ; Electrons ; freestanding sulfur cathodes ; high rate capability ; Mail ; Materials science ; Nanofibers ; Nanoparticles ; Polysulfides ; Reaction kinetics ; Redox reactions ; Sodium ; Sodium sulfide ; sodium–sulfur batteries ; Structural hierarchy ; Sulfur</subject><ispartof>Advanced functional materials, 2021-08, Vol.31 (32), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-894e14671c521f013c1d9cb712277d4ed391892b10fe651e4ad57b3daf879ad83</citedby><cites>FETCH-LOGICAL-c3570-894e14671c521f013c1d9cb712277d4ed391892b10fe651e4ad57b3daf879ad83</cites><orcidid>0000-0003-1155-6082 ; 0000-0003-1704-0829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202102280$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202102280$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yang, Huiling</creatorcontrib><creatorcontrib>Zhou, Si</creatorcontrib><creatorcontrib>Zhang, Bin‐Wei</creatorcontrib><creatorcontrib>Chu, Sheng‐Qi</creatorcontrib><creatorcontrib>Guo, Haipeng</creatorcontrib><creatorcontrib>Gu, Qin‐Fen</creatorcontrib><creatorcontrib>Liu, Hanwen</creatorcontrib><creatorcontrib>Lei, Yaojie</creatorcontrib><creatorcontrib>Konstantinov, Konstantin</creatorcontrib><creatorcontrib>Wang, Yun‐Xiao</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><creatorcontrib>Liu, Hua‐Kun</creatorcontrib><creatorcontrib>Dou, Shi‐Xue</creatorcontrib><title>Architecting Freestanding Sulfur Cathodes for Superior Room‐Temperature Na–S Batteries</title><title>Advanced functional materials</title><description>Room‐temperature sodium–sulfur (RT Na–S) batteries have attracted extensive attention because of their low cost and high specific energy. RT Na–S batteries, however, usually suffer from sluggish reaction kinetics, low reversible capacity, and short lifespans. Herein, it is shown that chain‐mail catalysts, consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles (Co@PCNFs), can activate sulfur via electron engineering. The chain‐mail catalysts Co@PCNFs with a micrograde hierarchical structure as a freestanding sulfur cathode (Co@PCNFs/S) can provide space for high mass loading of sulfur and polysulfides. The electrons can rapidly transfer from chain‐mail catalysts to sulfur and polysulfides during discharge–charge processes, therefore boosting its conversion kinetics. As a result, this freestanding Co@PCNFs/S cathode achieves a high sulfur loading of 2.1 ± 0.2 mg cm−2, delivering a high reversible capacity of 398 mA h g−1 at 0.5 C (1 C = 1675 mA g−1) over 600 cycles and superior rate capability of an average capacity of 240 mA h g−1 at 5 C. Experimental results, combined with density functional theory calculations, demonstrate that the Co@PCNFs/S can efficiently improve the conversion kinetics between the polysulfides and Na2S via transferring electrons from Co to them, thereby realizing efficient sulfur redox reactions. A chain‐mail catalyst consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles is developed for a freestanding sulfur cathode (Co@PCNFs/S) in room‐temperature sodium–sulfur batteries. The electron engineering in Co@PCNFs/S can transfer electrons from Co@PCNFs to sulfur and polysulfides, which activates reactivity and the conversion kinetics of the S cathode, leading to long cycling stability and high‐rate capacity.</description><subject>Carbon fibers</subject><subject>Catalysts</subject><subject>Cathodes</subject><subject>Chains</subject><subject>chain‐mail catalysts</subject><subject>Conversion</subject><subject>Density functional theory</subject><subject>electron engineering</subject><subject>Electrons</subject><subject>freestanding sulfur cathodes</subject><subject>high rate capability</subject><subject>Mail</subject><subject>Materials science</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Polysulfides</subject><subject>Reaction kinetics</subject><subject>Redox reactions</subject><subject>Sodium</subject><subject>Sodium sulfide</subject><subject>sodium–sulfur batteries</subject><subject>Structural hierarchy</subject><subject>Sulfur</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KAzEQxoMoWKtXzwuet2ayf7I51uqqUBVsBfES0s3Ebul2a7KL9NZHEHzDPokplXr0NN8Mv29m-Ag5B9oDStml0qbqMcqAMpbRA9KBFNIwoiw73Gt4PSYnzs0oBc6juEPe-raYlg0WTbl4D3KL6Bq10Ntm1M5Na4OBaqa1RheY2vrZEm3pxXNdV5v11xgrP1BNazF4VJv19yi4Uk3jGXSn5MioucOz39olL_nNeHAXDp9u7wf9YVhECadhJmKEOOVQJAwMhagALYoJB8Y41zHqSEAm2ASowTQBjJVO-CTSymRcKJ1FXXKx27u09Ufr_5ezurULf1KyJBGpoIkAT_V2VGFr5ywaubRlpexKApXb_OQ2P7nPzxvEzvBZznH1Dy371_nDn_cHwC12JQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Yang, Huiling</creator><creator>Zhou, Si</creator><creator>Zhang, Bin‐Wei</creator><creator>Chu, Sheng‐Qi</creator><creator>Guo, Haipeng</creator><creator>Gu, Qin‐Fen</creator><creator>Liu, Hanwen</creator><creator>Lei, Yaojie</creator><creator>Konstantinov, Konstantin</creator><creator>Wang, Yun‐Xiao</creator><creator>Chou, Shu‐Lei</creator><creator>Liu, Hua‐Kun</creator><creator>Dou, Shi‐Xue</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1155-6082</orcidid><orcidid>https://orcid.org/0000-0003-1704-0829</orcidid></search><sort><creationdate>20210801</creationdate><title>Architecting Freestanding Sulfur Cathodes for Superior Room‐Temperature Na–S Batteries</title><author>Yang, Huiling ; Zhou, Si ; Zhang, Bin‐Wei ; Chu, Sheng‐Qi ; Guo, Haipeng ; Gu, Qin‐Fen ; Liu, Hanwen ; Lei, Yaojie ; Konstantinov, Konstantin ; Wang, Yun‐Xiao ; Chou, Shu‐Lei ; Liu, Hua‐Kun ; Dou, Shi‐Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-894e14671c521f013c1d9cb712277d4ed391892b10fe651e4ad57b3daf879ad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon fibers</topic><topic>Catalysts</topic><topic>Cathodes</topic><topic>Chains</topic><topic>chain‐mail catalysts</topic><topic>Conversion</topic><topic>Density functional theory</topic><topic>electron engineering</topic><topic>Electrons</topic><topic>freestanding sulfur cathodes</topic><topic>high rate capability</topic><topic>Mail</topic><topic>Materials science</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Polysulfides</topic><topic>Reaction kinetics</topic><topic>Redox reactions</topic><topic>Sodium</topic><topic>Sodium sulfide</topic><topic>sodium–sulfur batteries</topic><topic>Structural hierarchy</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Huiling</creatorcontrib><creatorcontrib>Zhou, Si</creatorcontrib><creatorcontrib>Zhang, Bin‐Wei</creatorcontrib><creatorcontrib>Chu, Sheng‐Qi</creatorcontrib><creatorcontrib>Guo, Haipeng</creatorcontrib><creatorcontrib>Gu, Qin‐Fen</creatorcontrib><creatorcontrib>Liu, Hanwen</creatorcontrib><creatorcontrib>Lei, Yaojie</creatorcontrib><creatorcontrib>Konstantinov, Konstantin</creatorcontrib><creatorcontrib>Wang, Yun‐Xiao</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><creatorcontrib>Liu, Hua‐Kun</creatorcontrib><creatorcontrib>Dou, Shi‐Xue</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Huiling</au><au>Zhou, Si</au><au>Zhang, Bin‐Wei</au><au>Chu, Sheng‐Qi</au><au>Guo, Haipeng</au><au>Gu, Qin‐Fen</au><au>Liu, Hanwen</au><au>Lei, Yaojie</au><au>Konstantinov, Konstantin</au><au>Wang, Yun‐Xiao</au><au>Chou, Shu‐Lei</au><au>Liu, Hua‐Kun</au><au>Dou, Shi‐Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architecting Freestanding Sulfur Cathodes for Superior Room‐Temperature Na–S Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>32</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Room‐temperature sodium–sulfur (RT Na–S) batteries have attracted extensive attention because of their low cost and high specific energy. RT Na–S batteries, however, usually suffer from sluggish reaction kinetics, low reversible capacity, and short lifespans. Herein, it is shown that chain‐mail catalysts, consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles (Co@PCNFs), can activate sulfur via electron engineering. The chain‐mail catalysts Co@PCNFs with a micrograde hierarchical structure as a freestanding sulfur cathode (Co@PCNFs/S) can provide space for high mass loading of sulfur and polysulfides. The electrons can rapidly transfer from chain‐mail catalysts to sulfur and polysulfides during discharge–charge processes, therefore boosting its conversion kinetics. As a result, this freestanding Co@PCNFs/S cathode achieves a high sulfur loading of 2.1 ± 0.2 mg cm−2, delivering a high reversible capacity of 398 mA h g−1 at 0.5 C (1 C = 1675 mA g−1) over 600 cycles and superior rate capability of an average capacity of 240 mA h g−1 at 5 C. Experimental results, combined with density functional theory calculations, demonstrate that the Co@PCNFs/S can efficiently improve the conversion kinetics between the polysulfides and Na2S via transferring electrons from Co to them, thereby realizing efficient sulfur redox reactions. A chain‐mail catalyst consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles is developed for a freestanding sulfur cathode (Co@PCNFs/S) in room‐temperature sodium–sulfur batteries. The electron engineering in Co@PCNFs/S can transfer electrons from Co@PCNFs to sulfur and polysulfides, which activates reactivity and the conversion kinetics of the S cathode, leading to long cycling stability and high‐rate capacity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202102280</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1155-6082</orcidid><orcidid>https://orcid.org/0000-0003-1704-0829</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-08, Vol.31 (32), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2559690591
source Wiley Online Library All Journals
subjects Carbon fibers
Catalysts
Cathodes
Chains
chain‐mail catalysts
Conversion
Density functional theory
electron engineering
Electrons
freestanding sulfur cathodes
high rate capability
Mail
Materials science
Nanofibers
Nanoparticles
Polysulfides
Reaction kinetics
Redox reactions
Sodium
Sodium sulfide
sodium–sulfur batteries
Structural hierarchy
Sulfur
title Architecting Freestanding Sulfur Cathodes for Superior Room‐Temperature Na–S Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architecting%20Freestanding%20Sulfur%20Cathodes%20for%20Superior%20Room%E2%80%90Temperature%20Na%E2%80%93S%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Yang,%20Huiling&rft.date=2021-08-01&rft.volume=31&rft.issue=32&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202102280&rft_dat=%3Cproquest_cross%3E2559690591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559690591&rft_id=info:pmid/&rfr_iscdi=true