Architecting Freestanding Sulfur Cathodes for Superior Room‐Temperature Na–S Batteries
Room‐temperature sodium–sulfur (RT Na–S) batteries have attracted extensive attention because of their low cost and high specific energy. RT Na–S batteries, however, usually suffer from sluggish reaction kinetics, low reversible capacity, and short lifespans. Herein, it is shown that chain‐mail cata...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-08, Vol.31 (32), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 32 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Yang, Huiling Zhou, Si Zhang, Bin‐Wei Chu, Sheng‐Qi Guo, Haipeng Gu, Qin‐Fen Liu, Hanwen Lei, Yaojie Konstantinov, Konstantin Wang, Yun‐Xiao Chou, Shu‐Lei Liu, Hua‐Kun Dou, Shi‐Xue |
description | Room‐temperature sodium–sulfur (RT Na–S) batteries have attracted extensive attention because of their low cost and high specific energy. RT Na–S batteries, however, usually suffer from sluggish reaction kinetics, low reversible capacity, and short lifespans. Herein, it is shown that chain‐mail catalysts, consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles (Co@PCNFs), can activate sulfur via electron engineering. The chain‐mail catalysts Co@PCNFs with a micrograde hierarchical structure as a freestanding sulfur cathode (Co@PCNFs/S) can provide space for high mass loading of sulfur and polysulfides. The electrons can rapidly transfer from chain‐mail catalysts to sulfur and polysulfides during discharge–charge processes, therefore boosting its conversion kinetics. As a result, this freestanding Co@PCNFs/S cathode achieves a high sulfur loading of 2.1 ± 0.2 mg cm−2, delivering a high reversible capacity of 398 mA h g−1 at 0.5 C (1 C = 1675 mA g−1) over 600 cycles and superior rate capability of an average capacity of 240 mA h g−1 at 5 C. Experimental results, combined with density functional theory calculations, demonstrate that the Co@PCNFs/S can efficiently improve the conversion kinetics between the polysulfides and Na2S via transferring electrons from Co to them, thereby realizing efficient sulfur redox reactions.
A chain‐mail catalyst consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles is developed for a freestanding sulfur cathode (Co@PCNFs/S) in room‐temperature sodium–sulfur batteries. The electron engineering in Co@PCNFs/S can transfer electrons from Co@PCNFs to sulfur and polysulfides, which activates reactivity and the conversion kinetics of the S cathode, leading to long cycling stability and high‐rate capacity. |
doi_str_mv | 10.1002/adfm.202102280 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559690591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559690591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-894e14671c521f013c1d9cb712277d4ed391892b10fe651e4ad57b3daf879ad83</originalsourceid><addsrcrecordid>eNqFkM9KAzEQxoMoWKtXzwuet2ayf7I51uqqUBVsBfES0s3Ebul2a7KL9NZHEHzDPokplXr0NN8Mv29m-Ag5B9oDStml0qbqMcqAMpbRA9KBFNIwoiw73Gt4PSYnzs0oBc6juEPe-raYlg0WTbl4D3KL6Bq10Ntm1M5Na4OBaqa1RheY2vrZEm3pxXNdV5v11xgrP1BNazF4VJv19yi4Uk3jGXSn5MioucOz39olL_nNeHAXDp9u7wf9YVhECadhJmKEOOVQJAwMhagALYoJB8Y41zHqSEAm2ASowTQBjJVO-CTSymRcKJ1FXXKx27u09Ufr_5ezurULf1KyJBGpoIkAT_V2VGFr5ywaubRlpexKApXb_OQ2P7nPzxvEzvBZznH1Dy371_nDn_cHwC12JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559690591</pqid></control><display><type>article</type><title>Architecting Freestanding Sulfur Cathodes for Superior Room‐Temperature Na–S Batteries</title><source>Wiley Online Library All Journals</source><creator>Yang, Huiling ; Zhou, Si ; Zhang, Bin‐Wei ; Chu, Sheng‐Qi ; Guo, Haipeng ; Gu, Qin‐Fen ; Liu, Hanwen ; Lei, Yaojie ; Konstantinov, Konstantin ; Wang, Yun‐Xiao ; Chou, Shu‐Lei ; Liu, Hua‐Kun ; Dou, Shi‐Xue</creator><creatorcontrib>Yang, Huiling ; Zhou, Si ; Zhang, Bin‐Wei ; Chu, Sheng‐Qi ; Guo, Haipeng ; Gu, Qin‐Fen ; Liu, Hanwen ; Lei, Yaojie ; Konstantinov, Konstantin ; Wang, Yun‐Xiao ; Chou, Shu‐Lei ; Liu, Hua‐Kun ; Dou, Shi‐Xue</creatorcontrib><description>Room‐temperature sodium–sulfur (RT Na–S) batteries have attracted extensive attention because of their low cost and high specific energy. RT Na–S batteries, however, usually suffer from sluggish reaction kinetics, low reversible capacity, and short lifespans. Herein, it is shown that chain‐mail catalysts, consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles (Co@PCNFs), can activate sulfur via electron engineering. The chain‐mail catalysts Co@PCNFs with a micrograde hierarchical structure as a freestanding sulfur cathode (Co@PCNFs/S) can provide space for high mass loading of sulfur and polysulfides. The electrons can rapidly transfer from chain‐mail catalysts to sulfur and polysulfides during discharge–charge processes, therefore boosting its conversion kinetics. As a result, this freestanding Co@PCNFs/S cathode achieves a high sulfur loading of 2.1 ± 0.2 mg cm−2, delivering a high reversible capacity of 398 mA h g−1 at 0.5 C (1 C = 1675 mA g−1) over 600 cycles and superior rate capability of an average capacity of 240 mA h g−1 at 5 C. Experimental results, combined with density functional theory calculations, demonstrate that the Co@PCNFs/S can efficiently improve the conversion kinetics between the polysulfides and Na2S via transferring electrons from Co to them, thereby realizing efficient sulfur redox reactions.
A chain‐mail catalyst consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles is developed for a freestanding sulfur cathode (Co@PCNFs/S) in room‐temperature sodium–sulfur batteries. The electron engineering in Co@PCNFs/S can transfer electrons from Co@PCNFs to sulfur and polysulfides, which activates reactivity and the conversion kinetics of the S cathode, leading to long cycling stability and high‐rate capacity.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202102280</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carbon fibers ; Catalysts ; Cathodes ; Chains ; chain‐mail catalysts ; Conversion ; Density functional theory ; electron engineering ; Electrons ; freestanding sulfur cathodes ; high rate capability ; Mail ; Materials science ; Nanofibers ; Nanoparticles ; Polysulfides ; Reaction kinetics ; Redox reactions ; Sodium ; Sodium sulfide ; sodium–sulfur batteries ; Structural hierarchy ; Sulfur</subject><ispartof>Advanced functional materials, 2021-08, Vol.31 (32), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-894e14671c521f013c1d9cb712277d4ed391892b10fe651e4ad57b3daf879ad83</citedby><cites>FETCH-LOGICAL-c3570-894e14671c521f013c1d9cb712277d4ed391892b10fe651e4ad57b3daf879ad83</cites><orcidid>0000-0003-1155-6082 ; 0000-0003-1704-0829</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202102280$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202102280$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yang, Huiling</creatorcontrib><creatorcontrib>Zhou, Si</creatorcontrib><creatorcontrib>Zhang, Bin‐Wei</creatorcontrib><creatorcontrib>Chu, Sheng‐Qi</creatorcontrib><creatorcontrib>Guo, Haipeng</creatorcontrib><creatorcontrib>Gu, Qin‐Fen</creatorcontrib><creatorcontrib>Liu, Hanwen</creatorcontrib><creatorcontrib>Lei, Yaojie</creatorcontrib><creatorcontrib>Konstantinov, Konstantin</creatorcontrib><creatorcontrib>Wang, Yun‐Xiao</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><creatorcontrib>Liu, Hua‐Kun</creatorcontrib><creatorcontrib>Dou, Shi‐Xue</creatorcontrib><title>Architecting Freestanding Sulfur Cathodes for Superior Room‐Temperature Na–S Batteries</title><title>Advanced functional materials</title><description>Room‐temperature sodium–sulfur (RT Na–S) batteries have attracted extensive attention because of their low cost and high specific energy. RT Na–S batteries, however, usually suffer from sluggish reaction kinetics, low reversible capacity, and short lifespans. Herein, it is shown that chain‐mail catalysts, consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles (Co@PCNFs), can activate sulfur via electron engineering. The chain‐mail catalysts Co@PCNFs with a micrograde hierarchical structure as a freestanding sulfur cathode (Co@PCNFs/S) can provide space for high mass loading of sulfur and polysulfides. The electrons can rapidly transfer from chain‐mail catalysts to sulfur and polysulfides during discharge–charge processes, therefore boosting its conversion kinetics. As a result, this freestanding Co@PCNFs/S cathode achieves a high sulfur loading of 2.1 ± 0.2 mg cm−2, delivering a high reversible capacity of 398 mA h g−1 at 0.5 C (1 C = 1675 mA g−1) over 600 cycles and superior rate capability of an average capacity of 240 mA h g−1 at 5 C. Experimental results, combined with density functional theory calculations, demonstrate that the Co@PCNFs/S can efficiently improve the conversion kinetics between the polysulfides and Na2S via transferring electrons from Co to them, thereby realizing efficient sulfur redox reactions.
A chain‐mail catalyst consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles is developed for a freestanding sulfur cathode (Co@PCNFs/S) in room‐temperature sodium–sulfur batteries. The electron engineering in Co@PCNFs/S can transfer electrons from Co@PCNFs to sulfur and polysulfides, which activates reactivity and the conversion kinetics of the S cathode, leading to long cycling stability and high‐rate capacity.</description><subject>Carbon fibers</subject><subject>Catalysts</subject><subject>Cathodes</subject><subject>Chains</subject><subject>chain‐mail catalysts</subject><subject>Conversion</subject><subject>Density functional theory</subject><subject>electron engineering</subject><subject>Electrons</subject><subject>freestanding sulfur cathodes</subject><subject>high rate capability</subject><subject>Mail</subject><subject>Materials science</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Polysulfides</subject><subject>Reaction kinetics</subject><subject>Redox reactions</subject><subject>Sodium</subject><subject>Sodium sulfide</subject><subject>sodium–sulfur batteries</subject><subject>Structural hierarchy</subject><subject>Sulfur</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM9KAzEQxoMoWKtXzwuet2ayf7I51uqqUBVsBfES0s3Ebul2a7KL9NZHEHzDPokplXr0NN8Mv29m-Ag5B9oDStml0qbqMcqAMpbRA9KBFNIwoiw73Gt4PSYnzs0oBc6juEPe-raYlg0WTbl4D3KL6Bq10Ntm1M5Na4OBaqa1RheY2vrZEm3pxXNdV5v11xgrP1BNazF4VJv19yi4Uk3jGXSn5MioucOz39olL_nNeHAXDp9u7wf9YVhECadhJmKEOOVQJAwMhagALYoJB8Y41zHqSEAm2ASowTQBjJVO-CTSymRcKJ1FXXKx27u09Ufr_5ezurULf1KyJBGpoIkAT_V2VGFr5ywaubRlpexKApXb_OQ2P7nPzxvEzvBZznH1Dy371_nDn_cHwC12JQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Yang, Huiling</creator><creator>Zhou, Si</creator><creator>Zhang, Bin‐Wei</creator><creator>Chu, Sheng‐Qi</creator><creator>Guo, Haipeng</creator><creator>Gu, Qin‐Fen</creator><creator>Liu, Hanwen</creator><creator>Lei, Yaojie</creator><creator>Konstantinov, Konstantin</creator><creator>Wang, Yun‐Xiao</creator><creator>Chou, Shu‐Lei</creator><creator>Liu, Hua‐Kun</creator><creator>Dou, Shi‐Xue</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1155-6082</orcidid><orcidid>https://orcid.org/0000-0003-1704-0829</orcidid></search><sort><creationdate>20210801</creationdate><title>Architecting Freestanding Sulfur Cathodes for Superior Room‐Temperature Na–S Batteries</title><author>Yang, Huiling ; Zhou, Si ; Zhang, Bin‐Wei ; Chu, Sheng‐Qi ; Guo, Haipeng ; Gu, Qin‐Fen ; Liu, Hanwen ; Lei, Yaojie ; Konstantinov, Konstantin ; Wang, Yun‐Xiao ; Chou, Shu‐Lei ; Liu, Hua‐Kun ; Dou, Shi‐Xue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-894e14671c521f013c1d9cb712277d4ed391892b10fe651e4ad57b3daf879ad83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon fibers</topic><topic>Catalysts</topic><topic>Cathodes</topic><topic>Chains</topic><topic>chain‐mail catalysts</topic><topic>Conversion</topic><topic>Density functional theory</topic><topic>electron engineering</topic><topic>Electrons</topic><topic>freestanding sulfur cathodes</topic><topic>high rate capability</topic><topic>Mail</topic><topic>Materials science</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Polysulfides</topic><topic>Reaction kinetics</topic><topic>Redox reactions</topic><topic>Sodium</topic><topic>Sodium sulfide</topic><topic>sodium–sulfur batteries</topic><topic>Structural hierarchy</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Huiling</creatorcontrib><creatorcontrib>Zhou, Si</creatorcontrib><creatorcontrib>Zhang, Bin‐Wei</creatorcontrib><creatorcontrib>Chu, Sheng‐Qi</creatorcontrib><creatorcontrib>Guo, Haipeng</creatorcontrib><creatorcontrib>Gu, Qin‐Fen</creatorcontrib><creatorcontrib>Liu, Hanwen</creatorcontrib><creatorcontrib>Lei, Yaojie</creatorcontrib><creatorcontrib>Konstantinov, Konstantin</creatorcontrib><creatorcontrib>Wang, Yun‐Xiao</creatorcontrib><creatorcontrib>Chou, Shu‐Lei</creatorcontrib><creatorcontrib>Liu, Hua‐Kun</creatorcontrib><creatorcontrib>Dou, Shi‐Xue</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Huiling</au><au>Zhou, Si</au><au>Zhang, Bin‐Wei</au><au>Chu, Sheng‐Qi</au><au>Guo, Haipeng</au><au>Gu, Qin‐Fen</au><au>Liu, Hanwen</au><au>Lei, Yaojie</au><au>Konstantinov, Konstantin</au><au>Wang, Yun‐Xiao</au><au>Chou, Shu‐Lei</au><au>Liu, Hua‐Kun</au><au>Dou, Shi‐Xue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Architecting Freestanding Sulfur Cathodes for Superior Room‐Temperature Na–S Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>32</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Room‐temperature sodium–sulfur (RT Na–S) batteries have attracted extensive attention because of their low cost and high specific energy. RT Na–S batteries, however, usually suffer from sluggish reaction kinetics, low reversible capacity, and short lifespans. Herein, it is shown that chain‐mail catalysts, consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles (Co@PCNFs), can activate sulfur via electron engineering. The chain‐mail catalysts Co@PCNFs with a micrograde hierarchical structure as a freestanding sulfur cathode (Co@PCNFs/S) can provide space for high mass loading of sulfur and polysulfides. The electrons can rapidly transfer from chain‐mail catalysts to sulfur and polysulfides during discharge–charge processes, therefore boosting its conversion kinetics. As a result, this freestanding Co@PCNFs/S cathode achieves a high sulfur loading of 2.1 ± 0.2 mg cm−2, delivering a high reversible capacity of 398 mA h g−1 at 0.5 C (1 C = 1675 mA g−1) over 600 cycles and superior rate capability of an average capacity of 240 mA h g−1 at 5 C. Experimental results, combined with density functional theory calculations, demonstrate that the Co@PCNFs/S can efficiently improve the conversion kinetics between the polysulfides and Na2S via transferring electrons from Co to them, thereby realizing efficient sulfur redox reactions.
A chain‐mail catalyst consisting of porous nitrogen doped carbon nanofibers (PCNFs) encapsulating Co nanoparticles is developed for a freestanding sulfur cathode (Co@PCNFs/S) in room‐temperature sodium–sulfur batteries. The electron engineering in Co@PCNFs/S can transfer electrons from Co@PCNFs to sulfur and polysulfides, which activates reactivity and the conversion kinetics of the S cathode, leading to long cycling stability and high‐rate capacity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202102280</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-1155-6082</orcidid><orcidid>https://orcid.org/0000-0003-1704-0829</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-08, Vol.31 (32), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2559690591 |
source | Wiley Online Library All Journals |
subjects | Carbon fibers Catalysts Cathodes Chains chain‐mail catalysts Conversion Density functional theory electron engineering Electrons freestanding sulfur cathodes high rate capability Materials science Nanofibers Nanoparticles Polysulfides Reaction kinetics Redox reactions Sodium Sodium sulfide sodium–sulfur batteries Structural hierarchy Sulfur |
title | Architecting Freestanding Sulfur Cathodes for Superior Room‐Temperature Na–S Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Architecting%20Freestanding%20Sulfur%20Cathodes%20for%20Superior%20Room%E2%80%90Temperature%20Na%E2%80%93S%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Yang,%20Huiling&rft.date=2021-08-01&rft.volume=31&rft.issue=32&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202102280&rft_dat=%3Cproquest_cross%3E2559690591%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559690591&rft_id=info:pmid/&rfr_iscdi=true |