A Self‐Limited Free‐Standing Sulfide Electrolyte Thin Film for All‐Solid‐State Lithium Metal Batteries
All‐solid‐state (ASS) lithium metal batteries (LMBs) are considered the most promising next‐generation batteries due to their superior safety and high projected energy density. To access the practically desired high energy density of ASS LMBs, an ultrathin solid‐state electrolyte (SSE) film with fas...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-08, Vol.31 (32), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 32 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Zhu, Gao‐Long Zhao, Chen‐Zi Peng, Hong‐Jie Yuan, Hong Hu, Jiang‐Kui Nan, Hao‐Xiong Lu, Yang Liu, Xin‐Yan Huang, Jia‐Qi He, Chuanxin Zhang, Jian Zhang, Qiang |
description | All‐solid‐state (ASS) lithium metal batteries (LMBs) are considered the most promising next‐generation batteries due to their superior safety and high projected energy density. To access the practically desired high energy density of ASS LMBs, an ultrathin solid‐state electrolyte (SSE) film with fast ion‐transport capability presents as an irreplaceable component to reduce the proportion of inactive materials in ASS batteries. In this contribution, an ultrathin (60 µm), flexible, and free‐standing argyrodite (Li6PS5Cl) SSE film is designed through a self‐limited strategy. A chemically compatible cellulose membrane is employed as the self‐limiting skeleton that not only defined the thinness of the sulfide SSE film but also strengthened its mechanical properties. The ionic conductivity of the SSE film reaches up to 6.3 × 10−3 S cm−1 at room temperature, enabling rapid lithium‐ion transportation. The self‐limited SSE thin films are evaluated in various ASS LMBs with different types of cathode (sulfur and lithium titanate) and anode materials (lithium and lithium‐indium alloy) at both mold‐cell and pouch‐cell levels, demonstrating a stable performance and high‐rate capability. This study provides a general strategy for the rational design of an SSE thin film towards high‐energy‐density ASS batteries.
An ultrathin, flexible, and free‐standing argyrodite solid‐state electrolyte film is designed through a self‐limited strategy. The ionic conductivity of the SSE film reaches up to 6.3 × 10−3 S cm−1 at room temperature, enabling rapid lithium‐ion transportation in all‐solid‐state batteries. |
doi_str_mv | 10.1002/adfm.202101985 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559690333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559690333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3175-da01643544fcf8c13d9af98b96bb1ad5c5333f68d524e5768a9c7b7acfb42c413</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMltiTrHjOInHUBpASsXQIrFFjn-oKycpjiPUjUfgGXkSUgWVkeneK53zXekD4BqjGUYovOVS17MQhRhhltITMMExjgOCwvT0uOPXc3DRdVuEcJKQaAKaDK6U1d-fX4WpjVcS5k6p4Vx53kjTvMFVb7WRCi6sEt61du8VXG9MA3Nja6hbBzNrD0JrjRzFgSiM35i-hkvluYV33HvljOouwZnmtlNXv3MKXvLFev4YFM8PT_OsCATBCQ0kRziOCI0iLXQqMJGMa5ZWLK4qzCUVlBCi41TSMFI0iVPORFIlXOgqCkWEyRTcjLk71773qvPltu1dM7wsQ0pZzNAQMFCzkRKu7TqndLlzpuZuX2JUHjotD52Wx04HgY3Ch7Fq_w9dZvf58s_9Aat2fyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559690333</pqid></control><display><type>article</type><title>A Self‐Limited Free‐Standing Sulfide Electrolyte Thin Film for All‐Solid‐State Lithium Metal Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhu, Gao‐Long ; Zhao, Chen‐Zi ; Peng, Hong‐Jie ; Yuan, Hong ; Hu, Jiang‐Kui ; Nan, Hao‐Xiong ; Lu, Yang ; Liu, Xin‐Yan ; Huang, Jia‐Qi ; He, Chuanxin ; Zhang, Jian ; Zhang, Qiang</creator><creatorcontrib>Zhu, Gao‐Long ; Zhao, Chen‐Zi ; Peng, Hong‐Jie ; Yuan, Hong ; Hu, Jiang‐Kui ; Nan, Hao‐Xiong ; Lu, Yang ; Liu, Xin‐Yan ; Huang, Jia‐Qi ; He, Chuanxin ; Zhang, Jian ; Zhang, Qiang</creatorcontrib><description>All‐solid‐state (ASS) lithium metal batteries (LMBs) are considered the most promising next‐generation batteries due to their superior safety and high projected energy density. To access the practically desired high energy density of ASS LMBs, an ultrathin solid‐state electrolyte (SSE) film with fast ion‐transport capability presents as an irreplaceable component to reduce the proportion of inactive materials in ASS batteries. In this contribution, an ultrathin (60 µm), flexible, and free‐standing argyrodite (Li6PS5Cl) SSE film is designed through a self‐limited strategy. A chemically compatible cellulose membrane is employed as the self‐limiting skeleton that not only defined the thinness of the sulfide SSE film but also strengthened its mechanical properties. The ionic conductivity of the SSE film reaches up to 6.3 × 10−3 S cm−1 at room temperature, enabling rapid lithium‐ion transportation. The self‐limited SSE thin films are evaluated in various ASS LMBs with different types of cathode (sulfur and lithium titanate) and anode materials (lithium and lithium‐indium alloy) at both mold‐cell and pouch‐cell levels, demonstrating a stable performance and high‐rate capability. This study provides a general strategy for the rational design of an SSE thin film towards high‐energy‐density ASS batteries.
An ultrathin, flexible, and free‐standing argyrodite solid‐state electrolyte film is designed through a self‐limited strategy. The ionic conductivity of the SSE film reaches up to 6.3 × 10−3 S cm−1 at room temperature, enabling rapid lithium‐ion transportation in all‐solid‐state batteries.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202101985</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>all‐solid‐state batteries ; Anodes ; Electrode materials ; Electrolytes ; Flux density ; Indium base alloys ; Ion currents ; Lithium ; Lithium batteries ; lithium metal batteries ; Materials science ; Mechanical properties ; pouch cells ; Room temperature ; solid‐state electrolyte thin films ; sulfide electrolytes ; Thin films</subject><ispartof>Advanced functional materials, 2021-08, Vol.31 (32), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3175-da01643544fcf8c13d9af98b96bb1ad5c5333f68d524e5768a9c7b7acfb42c413</citedby><cites>FETCH-LOGICAL-c3175-da01643544fcf8c13d9af98b96bb1ad5c5333f68d524e5768a9c7b7acfb42c413</cites><orcidid>0000-0002-3929-1541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202101985$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202101985$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhu, Gao‐Long</creatorcontrib><creatorcontrib>Zhao, Chen‐Zi</creatorcontrib><creatorcontrib>Peng, Hong‐Jie</creatorcontrib><creatorcontrib>Yuan, Hong</creatorcontrib><creatorcontrib>Hu, Jiang‐Kui</creatorcontrib><creatorcontrib>Nan, Hao‐Xiong</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Liu, Xin‐Yan</creatorcontrib><creatorcontrib>Huang, Jia‐Qi</creatorcontrib><creatorcontrib>He, Chuanxin</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><title>A Self‐Limited Free‐Standing Sulfide Electrolyte Thin Film for All‐Solid‐State Lithium Metal Batteries</title><title>Advanced functional materials</title><description>All‐solid‐state (ASS) lithium metal batteries (LMBs) are considered the most promising next‐generation batteries due to their superior safety and high projected energy density. To access the practically desired high energy density of ASS LMBs, an ultrathin solid‐state electrolyte (SSE) film with fast ion‐transport capability presents as an irreplaceable component to reduce the proportion of inactive materials in ASS batteries. In this contribution, an ultrathin (60 µm), flexible, and free‐standing argyrodite (Li6PS5Cl) SSE film is designed through a self‐limited strategy. A chemically compatible cellulose membrane is employed as the self‐limiting skeleton that not only defined the thinness of the sulfide SSE film but also strengthened its mechanical properties. The ionic conductivity of the SSE film reaches up to 6.3 × 10−3 S cm−1 at room temperature, enabling rapid lithium‐ion transportation. The self‐limited SSE thin films are evaluated in various ASS LMBs with different types of cathode (sulfur and lithium titanate) and anode materials (lithium and lithium‐indium alloy) at both mold‐cell and pouch‐cell levels, demonstrating a stable performance and high‐rate capability. This study provides a general strategy for the rational design of an SSE thin film towards high‐energy‐density ASS batteries.
An ultrathin, flexible, and free‐standing argyrodite solid‐state electrolyte film is designed through a self‐limited strategy. The ionic conductivity of the SSE film reaches up to 6.3 × 10−3 S cm−1 at room temperature, enabling rapid lithium‐ion transportation in all‐solid‐state batteries.</description><subject>all‐solid‐state batteries</subject><subject>Anodes</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Flux density</subject><subject>Indium base alloys</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>lithium metal batteries</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>pouch cells</subject><subject>Room temperature</subject><subject>solid‐state electrolyte thin films</subject><subject>sulfide electrolytes</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEqWwMltiTrHjOInHUBpASsXQIrFFjn-oKycpjiPUjUfgGXkSUgWVkeneK53zXekD4BqjGUYovOVS17MQhRhhltITMMExjgOCwvT0uOPXc3DRdVuEcJKQaAKaDK6U1d-fX4WpjVcS5k6p4Vx53kjTvMFVb7WRCi6sEt61du8VXG9MA3Nja6hbBzNrD0JrjRzFgSiM35i-hkvluYV33HvljOouwZnmtlNXv3MKXvLFev4YFM8PT_OsCATBCQ0kRziOCI0iLXQqMJGMa5ZWLK4qzCUVlBCi41TSMFI0iVPORFIlXOgqCkWEyRTcjLk71773qvPltu1dM7wsQ0pZzNAQMFCzkRKu7TqndLlzpuZuX2JUHjotD52Wx04HgY3Ch7Fq_w9dZvf58s_9Aat2fyU</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Zhu, Gao‐Long</creator><creator>Zhao, Chen‐Zi</creator><creator>Peng, Hong‐Jie</creator><creator>Yuan, Hong</creator><creator>Hu, Jiang‐Kui</creator><creator>Nan, Hao‐Xiong</creator><creator>Lu, Yang</creator><creator>Liu, Xin‐Yan</creator><creator>Huang, Jia‐Qi</creator><creator>He, Chuanxin</creator><creator>Zhang, Jian</creator><creator>Zhang, Qiang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3929-1541</orcidid></search><sort><creationdate>20210801</creationdate><title>A Self‐Limited Free‐Standing Sulfide Electrolyte Thin Film for All‐Solid‐State Lithium Metal Batteries</title><author>Zhu, Gao‐Long ; Zhao, Chen‐Zi ; Peng, Hong‐Jie ; Yuan, Hong ; Hu, Jiang‐Kui ; Nan, Hao‐Xiong ; Lu, Yang ; Liu, Xin‐Yan ; Huang, Jia‐Qi ; He, Chuanxin ; Zhang, Jian ; Zhang, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3175-da01643544fcf8c13d9af98b96bb1ad5c5333f68d524e5768a9c7b7acfb42c413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>all‐solid‐state batteries</topic><topic>Anodes</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Flux density</topic><topic>Indium base alloys</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>lithium metal batteries</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>pouch cells</topic><topic>Room temperature</topic><topic>solid‐state electrolyte thin films</topic><topic>sulfide electrolytes</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Gao‐Long</creatorcontrib><creatorcontrib>Zhao, Chen‐Zi</creatorcontrib><creatorcontrib>Peng, Hong‐Jie</creatorcontrib><creatorcontrib>Yuan, Hong</creatorcontrib><creatorcontrib>Hu, Jiang‐Kui</creatorcontrib><creatorcontrib>Nan, Hao‐Xiong</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Liu, Xin‐Yan</creatorcontrib><creatorcontrib>Huang, Jia‐Qi</creatorcontrib><creatorcontrib>He, Chuanxin</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Gao‐Long</au><au>Zhao, Chen‐Zi</au><au>Peng, Hong‐Jie</au><au>Yuan, Hong</au><au>Hu, Jiang‐Kui</au><au>Nan, Hao‐Xiong</au><au>Lu, Yang</au><au>Liu, Xin‐Yan</au><au>Huang, Jia‐Qi</au><au>He, Chuanxin</au><au>Zhang, Jian</au><au>Zhang, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Self‐Limited Free‐Standing Sulfide Electrolyte Thin Film for All‐Solid‐State Lithium Metal Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>32</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>All‐solid‐state (ASS) lithium metal batteries (LMBs) are considered the most promising next‐generation batteries due to their superior safety and high projected energy density. To access the practically desired high energy density of ASS LMBs, an ultrathin solid‐state electrolyte (SSE) film with fast ion‐transport capability presents as an irreplaceable component to reduce the proportion of inactive materials in ASS batteries. In this contribution, an ultrathin (60 µm), flexible, and free‐standing argyrodite (Li6PS5Cl) SSE film is designed through a self‐limited strategy. A chemically compatible cellulose membrane is employed as the self‐limiting skeleton that not only defined the thinness of the sulfide SSE film but also strengthened its mechanical properties. The ionic conductivity of the SSE film reaches up to 6.3 × 10−3 S cm−1 at room temperature, enabling rapid lithium‐ion transportation. The self‐limited SSE thin films are evaluated in various ASS LMBs with different types of cathode (sulfur and lithium titanate) and anode materials (lithium and lithium‐indium alloy) at both mold‐cell and pouch‐cell levels, demonstrating a stable performance and high‐rate capability. This study provides a general strategy for the rational design of an SSE thin film towards high‐energy‐density ASS batteries.
An ultrathin, flexible, and free‐standing argyrodite solid‐state electrolyte film is designed through a self‐limited strategy. The ionic conductivity of the SSE film reaches up to 6.3 × 10−3 S cm−1 at room temperature, enabling rapid lithium‐ion transportation in all‐solid‐state batteries.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202101985</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3929-1541</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-08, Vol.31 (32), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2559690333 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | all‐solid‐state batteries Anodes Electrode materials Electrolytes Flux density Indium base alloys Ion currents Lithium Lithium batteries lithium metal batteries Materials science Mechanical properties pouch cells Room temperature solid‐state electrolyte thin films sulfide electrolytes Thin films |
title | A Self‐Limited Free‐Standing Sulfide Electrolyte Thin Film for All‐Solid‐State Lithium Metal Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Self%E2%80%90Limited%20Free%E2%80%90Standing%20Sulfide%20Electrolyte%20Thin%20Film%20for%20All%E2%80%90Solid%E2%80%90State%20Lithium%20Metal%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhu,%20Gao%E2%80%90Long&rft.date=2021-08-01&rft.volume=31&rft.issue=32&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202101985&rft_dat=%3Cproquest_cross%3E2559690333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559690333&rft_id=info:pmid/&rfr_iscdi=true |