A Self‐Limited Free‐Standing Sulfide Electrolyte Thin Film for All‐Solid‐State Lithium Metal Batteries

All‐solid‐state (ASS) lithium metal batteries (LMBs) are considered the most promising next‐generation batteries due to their superior safety and high projected energy density. To access the practically desired high energy density of ASS LMBs, an ultrathin solid‐state electrolyte (SSE) film with fas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-08, Vol.31 (32), p.n/a
Hauptverfasser: Zhu, Gao‐Long, Zhao, Chen‐Zi, Peng, Hong‐Jie, Yuan, Hong, Hu, Jiang‐Kui, Nan, Hao‐Xiong, Lu, Yang, Liu, Xin‐Yan, Huang, Jia‐Qi, He, Chuanxin, Zhang, Jian, Zhang, Qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 32
container_start_page
container_title Advanced functional materials
container_volume 31
creator Zhu, Gao‐Long
Zhao, Chen‐Zi
Peng, Hong‐Jie
Yuan, Hong
Hu, Jiang‐Kui
Nan, Hao‐Xiong
Lu, Yang
Liu, Xin‐Yan
Huang, Jia‐Qi
He, Chuanxin
Zhang, Jian
Zhang, Qiang
description All‐solid‐state (ASS) lithium metal batteries (LMBs) are considered the most promising next‐generation batteries due to their superior safety and high projected energy density. To access the practically desired high energy density of ASS LMBs, an ultrathin solid‐state electrolyte (SSE) film with fast ion‐transport capability presents as an irreplaceable component to reduce the proportion of inactive materials in ASS batteries. In this contribution, an ultrathin (60 µm), flexible, and free‐standing argyrodite (Li6PS5Cl) SSE film is designed through a self‐limited strategy. A chemically compatible cellulose membrane is employed as the self‐limiting skeleton that not only defined the thinness of the sulfide SSE film but also strengthened its mechanical properties. The ionic conductivity of the SSE film reaches up to 6.3 × 10−3 S cm−1 at room temperature, enabling rapid lithium‐ion transportation. The self‐limited SSE thin films are evaluated in various ASS LMBs with different types of cathode (sulfur and lithium titanate) and anode materials (lithium and lithium‐indium alloy) at both mold‐cell and pouch‐cell levels, demonstrating a stable performance and high‐rate capability. This study provides a general strategy for the rational design of an SSE thin film towards high‐energy‐density ASS batteries. An ultrathin, flexible, and free‐standing argyrodite solid‐state electrolyte film is designed through a self‐limited strategy. The ionic conductivity of the SSE film reaches up to 6.3 × 10−3 S cm−1 at room temperature, enabling rapid lithium‐ion transportation in all‐solid‐state batteries.
doi_str_mv 10.1002/adfm.202101985
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559690333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559690333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3175-da01643544fcf8c13d9af98b96bb1ad5c5333f68d524e5768a9c7b7acfb42c413</originalsourceid><addsrcrecordid>eNqFkL1OwzAURi0EEqWwMltiTrHjOInHUBpASsXQIrFFjn-oKycpjiPUjUfgGXkSUgWVkeneK53zXekD4BqjGUYovOVS17MQhRhhltITMMExjgOCwvT0uOPXc3DRdVuEcJKQaAKaDK6U1d-fX4WpjVcS5k6p4Vx53kjTvMFVb7WRCi6sEt61du8VXG9MA3Nja6hbBzNrD0JrjRzFgSiM35i-hkvluYV33HvljOouwZnmtlNXv3MKXvLFev4YFM8PT_OsCATBCQ0kRziOCI0iLXQqMJGMa5ZWLK4qzCUVlBCi41TSMFI0iVPORFIlXOgqCkWEyRTcjLk71773qvPltu1dM7wsQ0pZzNAQMFCzkRKu7TqndLlzpuZuX2JUHjotD52Wx04HgY3Ch7Fq_w9dZvf58s_9Aat2fyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559690333</pqid></control><display><type>article</type><title>A Self‐Limited Free‐Standing Sulfide Electrolyte Thin Film for All‐Solid‐State Lithium Metal Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhu, Gao‐Long ; Zhao, Chen‐Zi ; Peng, Hong‐Jie ; Yuan, Hong ; Hu, Jiang‐Kui ; Nan, Hao‐Xiong ; Lu, Yang ; Liu, Xin‐Yan ; Huang, Jia‐Qi ; He, Chuanxin ; Zhang, Jian ; Zhang, Qiang</creator><creatorcontrib>Zhu, Gao‐Long ; Zhao, Chen‐Zi ; Peng, Hong‐Jie ; Yuan, Hong ; Hu, Jiang‐Kui ; Nan, Hao‐Xiong ; Lu, Yang ; Liu, Xin‐Yan ; Huang, Jia‐Qi ; He, Chuanxin ; Zhang, Jian ; Zhang, Qiang</creatorcontrib><description>All‐solid‐state (ASS) lithium metal batteries (LMBs) are considered the most promising next‐generation batteries due to their superior safety and high projected energy density. To access the practically desired high energy density of ASS LMBs, an ultrathin solid‐state electrolyte (SSE) film with fast ion‐transport capability presents as an irreplaceable component to reduce the proportion of inactive materials in ASS batteries. In this contribution, an ultrathin (60 µm), flexible, and free‐standing argyrodite (Li6PS5Cl) SSE film is designed through a self‐limited strategy. A chemically compatible cellulose membrane is employed as the self‐limiting skeleton that not only defined the thinness of the sulfide SSE film but also strengthened its mechanical properties. The ionic conductivity of the SSE film reaches up to 6.3 × 10−3 S cm−1 at room temperature, enabling rapid lithium‐ion transportation. The self‐limited SSE thin films are evaluated in various ASS LMBs with different types of cathode (sulfur and lithium titanate) and anode materials (lithium and lithium‐indium alloy) at both mold‐cell and pouch‐cell levels, demonstrating a stable performance and high‐rate capability. This study provides a general strategy for the rational design of an SSE thin film towards high‐energy‐density ASS batteries. An ultrathin, flexible, and free‐standing argyrodite solid‐state electrolyte film is designed through a self‐limited strategy. The ionic conductivity of the SSE film reaches up to 6.3 × 10−3 S cm−1 at room temperature, enabling rapid lithium‐ion transportation in all‐solid‐state batteries.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202101985</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>all‐solid‐state batteries ; Anodes ; Electrode materials ; Electrolytes ; Flux density ; Indium base alloys ; Ion currents ; Lithium ; Lithium batteries ; lithium metal batteries ; Materials science ; Mechanical properties ; pouch cells ; Room temperature ; solid‐state electrolyte thin films ; sulfide electrolytes ; Thin films</subject><ispartof>Advanced functional materials, 2021-08, Vol.31 (32), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3175-da01643544fcf8c13d9af98b96bb1ad5c5333f68d524e5768a9c7b7acfb42c413</citedby><cites>FETCH-LOGICAL-c3175-da01643544fcf8c13d9af98b96bb1ad5c5333f68d524e5768a9c7b7acfb42c413</cites><orcidid>0000-0002-3929-1541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202101985$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202101985$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Zhu, Gao‐Long</creatorcontrib><creatorcontrib>Zhao, Chen‐Zi</creatorcontrib><creatorcontrib>Peng, Hong‐Jie</creatorcontrib><creatorcontrib>Yuan, Hong</creatorcontrib><creatorcontrib>Hu, Jiang‐Kui</creatorcontrib><creatorcontrib>Nan, Hao‐Xiong</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Liu, Xin‐Yan</creatorcontrib><creatorcontrib>Huang, Jia‐Qi</creatorcontrib><creatorcontrib>He, Chuanxin</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><title>A Self‐Limited Free‐Standing Sulfide Electrolyte Thin Film for All‐Solid‐State Lithium Metal Batteries</title><title>Advanced functional materials</title><description>All‐solid‐state (ASS) lithium metal batteries (LMBs) are considered the most promising next‐generation batteries due to their superior safety and high projected energy density. To access the practically desired high energy density of ASS LMBs, an ultrathin solid‐state electrolyte (SSE) film with fast ion‐transport capability presents as an irreplaceable component to reduce the proportion of inactive materials in ASS batteries. In this contribution, an ultrathin (60 µm), flexible, and free‐standing argyrodite (Li6PS5Cl) SSE film is designed through a self‐limited strategy. A chemically compatible cellulose membrane is employed as the self‐limiting skeleton that not only defined the thinness of the sulfide SSE film but also strengthened its mechanical properties. The ionic conductivity of the SSE film reaches up to 6.3 × 10−3 S cm−1 at room temperature, enabling rapid lithium‐ion transportation. The self‐limited SSE thin films are evaluated in various ASS LMBs with different types of cathode (sulfur and lithium titanate) and anode materials (lithium and lithium‐indium alloy) at both mold‐cell and pouch‐cell levels, demonstrating a stable performance and high‐rate capability. This study provides a general strategy for the rational design of an SSE thin film towards high‐energy‐density ASS batteries. An ultrathin, flexible, and free‐standing argyrodite solid‐state electrolyte film is designed through a self‐limited strategy. The ionic conductivity of the SSE film reaches up to 6.3 × 10−3 S cm−1 at room temperature, enabling rapid lithium‐ion transportation in all‐solid‐state batteries.</description><subject>all‐solid‐state batteries</subject><subject>Anodes</subject><subject>Electrode materials</subject><subject>Electrolytes</subject><subject>Flux density</subject><subject>Indium base alloys</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>lithium metal batteries</subject><subject>Materials science</subject><subject>Mechanical properties</subject><subject>pouch cells</subject><subject>Room temperature</subject><subject>solid‐state electrolyte thin films</subject><subject>sulfide electrolytes</subject><subject>Thin films</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAURi0EEqWwMltiTrHjOInHUBpASsXQIrFFjn-oKycpjiPUjUfgGXkSUgWVkeneK53zXekD4BqjGUYovOVS17MQhRhhltITMMExjgOCwvT0uOPXc3DRdVuEcJKQaAKaDK6U1d-fX4WpjVcS5k6p4Vx53kjTvMFVb7WRCi6sEt61du8VXG9MA3Nja6hbBzNrD0JrjRzFgSiM35i-hkvluYV33HvljOouwZnmtlNXv3MKXvLFev4YFM8PT_OsCATBCQ0kRziOCI0iLXQqMJGMa5ZWLK4qzCUVlBCi41TSMFI0iVPORFIlXOgqCkWEyRTcjLk71773qvPltu1dM7wsQ0pZzNAQMFCzkRKu7TqndLlzpuZuX2JUHjotD52Wx04HgY3Ch7Fq_w9dZvf58s_9Aat2fyU</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Zhu, Gao‐Long</creator><creator>Zhao, Chen‐Zi</creator><creator>Peng, Hong‐Jie</creator><creator>Yuan, Hong</creator><creator>Hu, Jiang‐Kui</creator><creator>Nan, Hao‐Xiong</creator><creator>Lu, Yang</creator><creator>Liu, Xin‐Yan</creator><creator>Huang, Jia‐Qi</creator><creator>He, Chuanxin</creator><creator>Zhang, Jian</creator><creator>Zhang, Qiang</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3929-1541</orcidid></search><sort><creationdate>20210801</creationdate><title>A Self‐Limited Free‐Standing Sulfide Electrolyte Thin Film for All‐Solid‐State Lithium Metal Batteries</title><author>Zhu, Gao‐Long ; Zhao, Chen‐Zi ; Peng, Hong‐Jie ; Yuan, Hong ; Hu, Jiang‐Kui ; Nan, Hao‐Xiong ; Lu, Yang ; Liu, Xin‐Yan ; Huang, Jia‐Qi ; He, Chuanxin ; Zhang, Jian ; Zhang, Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3175-da01643544fcf8c13d9af98b96bb1ad5c5333f68d524e5768a9c7b7acfb42c413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>all‐solid‐state batteries</topic><topic>Anodes</topic><topic>Electrode materials</topic><topic>Electrolytes</topic><topic>Flux density</topic><topic>Indium base alloys</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>lithium metal batteries</topic><topic>Materials science</topic><topic>Mechanical properties</topic><topic>pouch cells</topic><topic>Room temperature</topic><topic>solid‐state electrolyte thin films</topic><topic>sulfide electrolytes</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Gao‐Long</creatorcontrib><creatorcontrib>Zhao, Chen‐Zi</creatorcontrib><creatorcontrib>Peng, Hong‐Jie</creatorcontrib><creatorcontrib>Yuan, Hong</creatorcontrib><creatorcontrib>Hu, Jiang‐Kui</creatorcontrib><creatorcontrib>Nan, Hao‐Xiong</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Liu, Xin‐Yan</creatorcontrib><creatorcontrib>Huang, Jia‐Qi</creatorcontrib><creatorcontrib>He, Chuanxin</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zhang, Qiang</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Gao‐Long</au><au>Zhao, Chen‐Zi</au><au>Peng, Hong‐Jie</au><au>Yuan, Hong</au><au>Hu, Jiang‐Kui</au><au>Nan, Hao‐Xiong</au><au>Lu, Yang</au><au>Liu, Xin‐Yan</au><au>Huang, Jia‐Qi</au><au>He, Chuanxin</au><au>Zhang, Jian</au><au>Zhang, Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Self‐Limited Free‐Standing Sulfide Electrolyte Thin Film for All‐Solid‐State Lithium Metal Batteries</atitle><jtitle>Advanced functional materials</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>32</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>All‐solid‐state (ASS) lithium metal batteries (LMBs) are considered the most promising next‐generation batteries due to their superior safety and high projected energy density. To access the practically desired high energy density of ASS LMBs, an ultrathin solid‐state electrolyte (SSE) film with fast ion‐transport capability presents as an irreplaceable component to reduce the proportion of inactive materials in ASS batteries. In this contribution, an ultrathin (60 µm), flexible, and free‐standing argyrodite (Li6PS5Cl) SSE film is designed through a self‐limited strategy. A chemically compatible cellulose membrane is employed as the self‐limiting skeleton that not only defined the thinness of the sulfide SSE film but also strengthened its mechanical properties. The ionic conductivity of the SSE film reaches up to 6.3 × 10−3 S cm−1 at room temperature, enabling rapid lithium‐ion transportation. The self‐limited SSE thin films are evaluated in various ASS LMBs with different types of cathode (sulfur and lithium titanate) and anode materials (lithium and lithium‐indium alloy) at both mold‐cell and pouch‐cell levels, demonstrating a stable performance and high‐rate capability. This study provides a general strategy for the rational design of an SSE thin film towards high‐energy‐density ASS batteries. An ultrathin, flexible, and free‐standing argyrodite solid‐state electrolyte film is designed through a self‐limited strategy. The ionic conductivity of the SSE film reaches up to 6.3 × 10−3 S cm−1 at room temperature, enabling rapid lithium‐ion transportation in all‐solid‐state batteries.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202101985</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3929-1541</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-08, Vol.31 (32), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2559690333
source Wiley Online Library Journals Frontfile Complete
subjects all‐solid‐state batteries
Anodes
Electrode materials
Electrolytes
Flux density
Indium base alloys
Ion currents
Lithium
Lithium batteries
lithium metal batteries
Materials science
Mechanical properties
pouch cells
Room temperature
solid‐state electrolyte thin films
sulfide electrolytes
Thin films
title A Self‐Limited Free‐Standing Sulfide Electrolyte Thin Film for All‐Solid‐State Lithium Metal Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A54%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Self%E2%80%90Limited%20Free%E2%80%90Standing%20Sulfide%20Electrolyte%20Thin%20Film%20for%20All%E2%80%90Solid%E2%80%90State%20Lithium%20Metal%20Batteries&rft.jtitle=Advanced%20functional%20materials&rft.au=Zhu,%20Gao%E2%80%90Long&rft.date=2021-08-01&rft.volume=31&rft.issue=32&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202101985&rft_dat=%3Cproquest_cross%3E2559690333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559690333&rft_id=info:pmid/&rfr_iscdi=true