Total Energy of Cycle and Some Cycle Related Graphs

In this article we write algorithms and MATLAB programs to find the total energy of Cycle and some Cycle related graphs. The concept of total matrix and total energy of a graph G is introduced by K.Palani&M.Lalithakumari in [9]. Let G=(V, E) be a (p, q) simple graph. Let V ( G ) = { ν i / i = 1,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of physics. Conference series 2021-06, Vol.1947 (1), p.12007
Hauptverfasser: Palani, K., LalithaKumari, M., Pandiselvi, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12007
container_title Journal of physics. Conference series
container_volume 1947
creator Palani, K.
LalithaKumari, M.
Pandiselvi, L.
description In this article we write algorithms and MATLAB programs to find the total energy of Cycle and some Cycle related graphs. The concept of total matrix and total energy of a graph G is introduced by K.Palani&M.Lalithakumari in [9]. Let G=(V, E) be a (p, q) simple graph. Let V ( G ) = { ν i / i = 1,2, … p } and E ( G ) = { e i / i = 1,2, … q }. The total matrix T = T ( G ) of G is a square matrix of order p + q whose (i, j)-entry is defined as: T = ( t i j ) = { 1 if v i adjacent to v j i ≠ j 1 if e i adjacent to e j i ≠ j 1 e i incident with v j 0 otherwise The Total Energy of a graph is the sum of absolute value of the eigen values of its Total matrix T ( G ). For any (p, q) graph G, the total number of eigen value is p+q. Let λ 1 , λ 2 , λ 3 , … λ p + q be the eigen values of T. Then total energy of G is T E = ∑ i + 1 p + q | λ i | .
doi_str_mv 10.1088/1742-6596/1947/1/012007
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2559689665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559689665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2747-949d9d5a146fe87639cc31f2aaf7b3359788b0d32e13dfc83cf24b0a0424f7ec3</originalsourceid><addsrcrecordid>eNqFUE1Lw0AQXUTBWv0NBrwJMfuV7O5RQq1KQbH1vGz2Q1vSbNxtD_n3JqRUBMG5zAzz3hveA-AawTsEOc8QozgtclFkSFCWoQwiDCE7AZPj5fQ4c34OLmLcQEj6YhNAVn6n6mTW2PDRJd4lZadrm6jGJEu_tYf1zdZqZ00yD6r9jJfgzKk62qtDn4L3h9mqfEwXL_On8n6RaswoSwUVRphcIVo4y1lBhNYEOayUYxUhuWCcV9AQbBExTnOiHaYVVJBi6pjVZApuRt02-K-9jTu58fvQ9C8lzntbXBRF3qPYiNLBxxisk21Yb1XoJIJySEgO3uWQgxwSkkiOCfVMMjLXvv2R_p91-wfr-bVc_gbK1jjyDTJ3c0k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559689665</pqid></control><display><type>article</type><title>Total Energy of Cycle and Some Cycle Related Graphs</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Palani, K. ; LalithaKumari, M. ; Pandiselvi, L.</creator><creatorcontrib>Palani, K. ; LalithaKumari, M. ; Pandiselvi, L.</creatorcontrib><description>In this article we write algorithms and MATLAB programs to find the total energy of Cycle and some Cycle related graphs. The concept of total matrix and total energy of a graph G is introduced by K.Palani&amp;M.Lalithakumari in [9]. Let G=(V, E) be a (p, q) simple graph. Let V ( G ) = { ν i / i = 1,2, … p } and E ( G ) = { e i / i = 1,2, … q }. The total matrix T = T ( G ) of G is a square matrix of order p + q whose (i, j)-entry is defined as: T = ( t i j ) = { 1 if v i adjacent to v j i ≠ j 1 if e i adjacent to e j i ≠ j 1 e i incident with v j 0 otherwise The Total Energy of a graph is the sum of absolute value of the eigen values of its Total matrix T ( G ). For any (p, q) graph G, the total number of eigen value is p+q. Let λ 1 , λ 2 , λ 3 , … λ p + q be the eigen values of T. Then total energy of G is T E = ∑ i + 1 p + q | λ i | .</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1947/1/012007</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Arrays ; Cycle ; Dumbbell ; Eigenvalues ; Graphs ; Pan ; Total Energy ; Total matrix</subject><ispartof>Journal of physics. Conference series, 2021-06, Vol.1947 (1), p.12007</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2747-949d9d5a146fe87639cc31f2aaf7b3359788b0d32e13dfc83cf24b0a0424f7ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1947/1/012007/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Palani, K.</creatorcontrib><creatorcontrib>LalithaKumari, M.</creatorcontrib><creatorcontrib>Pandiselvi, L.</creatorcontrib><title>Total Energy of Cycle and Some Cycle Related Graphs</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In this article we write algorithms and MATLAB programs to find the total energy of Cycle and some Cycle related graphs. The concept of total matrix and total energy of a graph G is introduced by K.Palani&amp;M.Lalithakumari in [9]. Let G=(V, E) be a (p, q) simple graph. Let V ( G ) = { ν i / i = 1,2, … p } and E ( G ) = { e i / i = 1,2, … q }. The total matrix T = T ( G ) of G is a square matrix of order p + q whose (i, j)-entry is defined as: T = ( t i j ) = { 1 if v i adjacent to v j i ≠ j 1 if e i adjacent to e j i ≠ j 1 e i incident with v j 0 otherwise The Total Energy of a graph is the sum of absolute value of the eigen values of its Total matrix T ( G ). For any (p, q) graph G, the total number of eigen value is p+q. Let λ 1 , λ 2 , λ 3 , … λ p + q be the eigen values of T. Then total energy of G is T E = ∑ i + 1 p + q | λ i | .</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Cycle</subject><subject>Dumbbell</subject><subject>Eigenvalues</subject><subject>Graphs</subject><subject>Pan</subject><subject>Total Energy</subject><subject>Total matrix</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFUE1Lw0AQXUTBWv0NBrwJMfuV7O5RQq1KQbH1vGz2Q1vSbNxtD_n3JqRUBMG5zAzz3hveA-AawTsEOc8QozgtclFkSFCWoQwiDCE7AZPj5fQ4c34OLmLcQEj6YhNAVn6n6mTW2PDRJd4lZadrm6jGJEu_tYf1zdZqZ00yD6r9jJfgzKk62qtDn4L3h9mqfEwXL_On8n6RaswoSwUVRphcIVo4y1lBhNYEOayUYxUhuWCcV9AQbBExTnOiHaYVVJBi6pjVZApuRt02-K-9jTu58fvQ9C8lzntbXBRF3qPYiNLBxxisk21Yb1XoJIJySEgO3uWQgxwSkkiOCfVMMjLXvv2R_p91-wfr-bVc_gbK1jjyDTJ3c0k</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Palani, K.</creator><creator>LalithaKumari, M.</creator><creator>Pandiselvi, L.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210601</creationdate><title>Total Energy of Cycle and Some Cycle Related Graphs</title><author>Palani, K. ; LalithaKumari, M. ; Pandiselvi, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2747-949d9d5a146fe87639cc31f2aaf7b3359788b0d32e13dfc83cf24b0a0424f7ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Cycle</topic><topic>Dumbbell</topic><topic>Eigenvalues</topic><topic>Graphs</topic><topic>Pan</topic><topic>Total Energy</topic><topic>Total matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palani, K.</creatorcontrib><creatorcontrib>LalithaKumari, M.</creatorcontrib><creatorcontrib>Pandiselvi, L.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palani, K.</au><au>LalithaKumari, M.</au><au>Pandiselvi, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total Energy of Cycle and Some Cycle Related Graphs</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>1947</volume><issue>1</issue><spage>12007</spage><pages>12007-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this article we write algorithms and MATLAB programs to find the total energy of Cycle and some Cycle related graphs. The concept of total matrix and total energy of a graph G is introduced by K.Palani&amp;M.Lalithakumari in [9]. Let G=(V, E) be a (p, q) simple graph. Let V ( G ) = { ν i / i = 1,2, … p } and E ( G ) = { e i / i = 1,2, … q }. The total matrix T = T ( G ) of G is a square matrix of order p + q whose (i, j)-entry is defined as: T = ( t i j ) = { 1 if v i adjacent to v j i ≠ j 1 if e i adjacent to e j i ≠ j 1 e i incident with v j 0 otherwise The Total Energy of a graph is the sum of absolute value of the eigen values of its Total matrix T ( G ). For any (p, q) graph G, the total number of eigen value is p+q. Let λ 1 , λ 2 , λ 3 , … λ p + q be the eigen values of T. Then total energy of G is T E = ∑ i + 1 p + q | λ i | .</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1947/1/012007</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6588
ispartof Journal of physics. Conference series, 2021-06, Vol.1947 (1), p.12007
issn 1742-6588
1742-6596
language eng
recordid cdi_proquest_journals_2559689665
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Algorithms
Arrays
Cycle
Dumbbell
Eigenvalues
Graphs
Pan
Total Energy
Total matrix
title Total Energy of Cycle and Some Cycle Related Graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20Energy%20of%20Cycle%20and%20Some%20Cycle%20Related%20Graphs&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Palani,%20K.&rft.date=2021-06-01&rft.volume=1947&rft.issue=1&rft.spage=12007&rft.pages=12007-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1947/1/012007&rft_dat=%3Cproquest_iop_j%3E2559689665%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559689665&rft_id=info:pmid/&rfr_iscdi=true