Total Energy of Cycle and Some Cycle Related Graphs
In this article we write algorithms and MATLAB programs to find the total energy of Cycle and some Cycle related graphs. The concept of total matrix and total energy of a graph G is introduced by K.Palani&M.Lalithakumari in [9]. Let G=(V, E) be a (p, q) simple graph. Let V ( G ) = { ν i / i = 1,...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Conference series 2021-06, Vol.1947 (1), p.12007 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 12007 |
container_title | Journal of physics. Conference series |
container_volume | 1947 |
creator | Palani, K. LalithaKumari, M. Pandiselvi, L. |
description | In this article we write algorithms and MATLAB programs to find the total energy of Cycle and some Cycle related graphs. The concept of total matrix and total energy of a graph G is introduced by K.Palani&M.Lalithakumari in [9]. Let G=(V, E) be a (p, q) simple graph. Let
V
(
G
) = {
ν
i
/
i
= 1,2, …
p
} and E (
G
) = {
e
i
/
i
= 1,2, …
q
}. The total matrix
T
=
T
(
G
) of G is a square matrix of order p + q whose (i, j)-entry is defined as:
T
=
(
t
i
j
)
=
{
1
if
v
i
adjacent to
v
j
i
≠
j
1
if
e
i
adjacent to
e
j
i
≠
j
1
e
i
incident with
v
j
0
otherwise
The Total Energy of a graph is the sum of absolute value of the eigen values of its Total matrix
T
(
G
). For any (p, q) graph G, the total number of eigen value is p+q.
Let
λ
1
,
λ
2
,
λ
3
, …
λ
p
+
q
be the eigen values of T. Then total energy of G is
T
E
=
∑
i
+
1
p
+
q
|
λ
i
|
. |
doi_str_mv | 10.1088/1742-6596/1947/1/012007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2559689665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559689665</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2747-949d9d5a146fe87639cc31f2aaf7b3359788b0d32e13dfc83cf24b0a0424f7ec3</originalsourceid><addsrcrecordid>eNqFUE1Lw0AQXUTBWv0NBrwJMfuV7O5RQq1KQbH1vGz2Q1vSbNxtD_n3JqRUBMG5zAzz3hveA-AawTsEOc8QozgtclFkSFCWoQwiDCE7AZPj5fQ4c34OLmLcQEj6YhNAVn6n6mTW2PDRJd4lZadrm6jGJEu_tYf1zdZqZ00yD6r9jJfgzKk62qtDn4L3h9mqfEwXL_On8n6RaswoSwUVRphcIVo4y1lBhNYEOayUYxUhuWCcV9AQbBExTnOiHaYVVJBi6pjVZApuRt02-K-9jTu58fvQ9C8lzntbXBRF3qPYiNLBxxisk21Yb1XoJIJySEgO3uWQgxwSkkiOCfVMMjLXvv2R_p91-wfr-bVc_gbK1jjyDTJ3c0k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559689665</pqid></control><display><type>article</type><title>Total Energy of Cycle and Some Cycle Related Graphs</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Institute of Physics Open Access Journal Titles</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Palani, K. ; LalithaKumari, M. ; Pandiselvi, L.</creator><creatorcontrib>Palani, K. ; LalithaKumari, M. ; Pandiselvi, L.</creatorcontrib><description>In this article we write algorithms and MATLAB programs to find the total energy of Cycle and some Cycle related graphs. The concept of total matrix and total energy of a graph G is introduced by K.Palani&M.Lalithakumari in [9]. Let G=(V, E) be a (p, q) simple graph. Let
V
(
G
) = {
ν
i
/
i
= 1,2, …
p
} and E (
G
) = {
e
i
/
i
= 1,2, …
q
}. The total matrix
T
=
T
(
G
) of G is a square matrix of order p + q whose (i, j)-entry is defined as:
T
=
(
t
i
j
)
=
{
1
if
v
i
adjacent to
v
j
i
≠
j
1
if
e
i
adjacent to
e
j
i
≠
j
1
e
i
incident with
v
j
0
otherwise
The Total Energy of a graph is the sum of absolute value of the eigen values of its Total matrix
T
(
G
). For any (p, q) graph G, the total number of eigen value is p+q.
Let
λ
1
,
λ
2
,
λ
3
, …
λ
p
+
q
be the eigen values of T. Then total energy of G is
T
E
=
∑
i
+
1
p
+
q
|
λ
i
|
.</description><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/1947/1/012007</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Algorithms ; Arrays ; Cycle ; Dumbbell ; Eigenvalues ; Graphs ; Pan ; Total Energy ; Total matrix</subject><ispartof>Journal of physics. Conference series, 2021-06, Vol.1947 (1), p.12007</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2021. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2747-949d9d5a146fe87639cc31f2aaf7b3359788b0d32e13dfc83cf24b0a0424f7ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1742-6596/1947/1/012007/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Palani, K.</creatorcontrib><creatorcontrib>LalithaKumari, M.</creatorcontrib><creatorcontrib>Pandiselvi, L.</creatorcontrib><title>Total Energy of Cycle and Some Cycle Related Graphs</title><title>Journal of physics. Conference series</title><addtitle>J. Phys.: Conf. Ser</addtitle><description>In this article we write algorithms and MATLAB programs to find the total energy of Cycle and some Cycle related graphs. The concept of total matrix and total energy of a graph G is introduced by K.Palani&M.Lalithakumari in [9]. Let G=(V, E) be a (p, q) simple graph. Let
V
(
G
) = {
ν
i
/
i
= 1,2, …
p
} and E (
G
) = {
e
i
/
i
= 1,2, …
q
}. The total matrix
T
=
T
(
G
) of G is a square matrix of order p + q whose (i, j)-entry is defined as:
T
=
(
t
i
j
)
=
{
1
if
v
i
adjacent to
v
j
i
≠
j
1
if
e
i
adjacent to
e
j
i
≠
j
1
e
i
incident with
v
j
0
otherwise
The Total Energy of a graph is the sum of absolute value of the eigen values of its Total matrix
T
(
G
). For any (p, q) graph G, the total number of eigen value is p+q.
Let
λ
1
,
λ
2
,
λ
3
, …
λ
p
+
q
be the eigen values of T. Then total energy of G is
T
E
=
∑
i
+
1
p
+
q
|
λ
i
|
.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>Cycle</subject><subject>Dumbbell</subject><subject>Eigenvalues</subject><subject>Graphs</subject><subject>Pan</subject><subject>Total Energy</subject><subject>Total matrix</subject><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFUE1Lw0AQXUTBWv0NBrwJMfuV7O5RQq1KQbH1vGz2Q1vSbNxtD_n3JqRUBMG5zAzz3hveA-AawTsEOc8QozgtclFkSFCWoQwiDCE7AZPj5fQ4c34OLmLcQEj6YhNAVn6n6mTW2PDRJd4lZadrm6jGJEu_tYf1zdZqZ00yD6r9jJfgzKk62qtDn4L3h9mqfEwXL_On8n6RaswoSwUVRphcIVo4y1lBhNYEOayUYxUhuWCcV9AQbBExTnOiHaYVVJBi6pjVZApuRt02-K-9jTu58fvQ9C8lzntbXBRF3qPYiNLBxxisk21Yb1XoJIJySEgO3uWQgxwSkkiOCfVMMjLXvv2R_p91-wfr-bVc_gbK1jjyDTJ3c0k</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Palani, K.</creator><creator>LalithaKumari, M.</creator><creator>Pandiselvi, L.</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20210601</creationdate><title>Total Energy of Cycle and Some Cycle Related Graphs</title><author>Palani, K. ; LalithaKumari, M. ; Pandiselvi, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2747-949d9d5a146fe87639cc31f2aaf7b3359788b0d32e13dfc83cf24b0a0424f7ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>Cycle</topic><topic>Dumbbell</topic><topic>Eigenvalues</topic><topic>Graphs</topic><topic>Pan</topic><topic>Total Energy</topic><topic>Total matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palani, K.</creatorcontrib><creatorcontrib>LalithaKumari, M.</creatorcontrib><creatorcontrib>Pandiselvi, L.</creatorcontrib><collection>Institute of Physics Open Access Journal Titles</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palani, K.</au><au>LalithaKumari, M.</au><au>Pandiselvi, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Total Energy of Cycle and Some Cycle Related Graphs</atitle><jtitle>Journal of physics. Conference series</jtitle><addtitle>J. Phys.: Conf. Ser</addtitle><date>2021-06-01</date><risdate>2021</risdate><volume>1947</volume><issue>1</issue><spage>12007</spage><pages>12007-</pages><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>In this article we write algorithms and MATLAB programs to find the total energy of Cycle and some Cycle related graphs. The concept of total matrix and total energy of a graph G is introduced by K.Palani&M.Lalithakumari in [9]. Let G=(V, E) be a (p, q) simple graph. Let
V
(
G
) = {
ν
i
/
i
= 1,2, …
p
} and E (
G
) = {
e
i
/
i
= 1,2, …
q
}. The total matrix
T
=
T
(
G
) of G is a square matrix of order p + q whose (i, j)-entry is defined as:
T
=
(
t
i
j
)
=
{
1
if
v
i
adjacent to
v
j
i
≠
j
1
if
e
i
adjacent to
e
j
i
≠
j
1
e
i
incident with
v
j
0
otherwise
The Total Energy of a graph is the sum of absolute value of the eigen values of its Total matrix
T
(
G
). For any (p, q) graph G, the total number of eigen value is p+q.
Let
λ
1
,
λ
2
,
λ
3
, …
λ
p
+
q
be the eigen values of T. Then total energy of G is
T
E
=
∑
i
+
1
p
+
q
|
λ
i
|
.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/1947/1/012007</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6588 |
ispartof | Journal of physics. Conference series, 2021-06, Vol.1947 (1), p.12007 |
issn | 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_journals_2559689665 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Institute of Physics Open Access Journal Titles; IOPscience extra; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Algorithms Arrays Cycle Dumbbell Eigenvalues Graphs Pan Total Energy Total matrix |
title | Total Energy of Cycle and Some Cycle Related Graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A26%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Total%20Energy%20of%20Cycle%20and%20Some%20Cycle%20Related%20Graphs&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Palani,%20K.&rft.date=2021-06-01&rft.volume=1947&rft.issue=1&rft.spage=12007&rft.pages=12007-&rft.issn=1742-6588&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/1947/1/012007&rft_dat=%3Cproquest_iop_j%3E2559689665%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559689665&rft_id=info:pmid/&rfr_iscdi=true |