A Hypothesis for the Aesthetic Appreciation in Neural Networks
This paper proposes a hypothesis for the aesthetic appreciation that aesthetic images make a neural network strengthen salient concepts and discard inessential concepts. In order to verify this hypothesis, we use multi-variate interactions to represent salient concepts and inessential concepts conta...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2021-07 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Xu, Cheng Wang, Xin Xue, Haotian Liang, Zhengyang Zhang, Quanshi |
description | This paper proposes a hypothesis for the aesthetic appreciation that aesthetic images make a neural network strengthen salient concepts and discard inessential concepts. In order to verify this hypothesis, we use multi-variate interactions to represent salient concepts and inessential concepts contained in images. Furthermore, we design a set of operations to revise images towards more beautiful ones. In experiments, we find that the revised images are more aesthetic than the original ones to some extent. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2559468735</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559468735</sourcerecordid><originalsourceid>FETCH-proquest_journals_25594687353</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwc1TwqCzIL8lILc4sVkjLL1IAMhUcU4uBVElmsoJjQUFRanJmYklmfp5CZp6CX2ppUWIOkCopzy_KLuZhYE1LzClO5YXS3AzKbq4hzh66BUX5haVAU-Kz8kuL8oBS8UD7LE3MLMyNTY2JUwUAnHY4PA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559468735</pqid></control><display><type>article</type><title>A Hypothesis for the Aesthetic Appreciation in Neural Networks</title><source>Free E- Journals</source><creator>Xu, Cheng ; Wang, Xin ; Xue, Haotian ; Liang, Zhengyang ; Zhang, Quanshi</creator><creatorcontrib>Xu, Cheng ; Wang, Xin ; Xue, Haotian ; Liang, Zhengyang ; Zhang, Quanshi</creatorcontrib><description>This paper proposes a hypothesis for the aesthetic appreciation that aesthetic images make a neural network strengthen salient concepts and discard inessential concepts. In order to verify this hypothesis, we use multi-variate interactions to represent salient concepts and inessential concepts contained in images. Furthermore, we design a set of operations to revise images towards more beautiful ones. In experiments, we find that the revised images are more aesthetic than the original ones to some extent.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Hypotheses ; Neural networks</subject><ispartof>arXiv.org, 2021-07</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Xu, Cheng</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Xue, Haotian</creatorcontrib><creatorcontrib>Liang, Zhengyang</creatorcontrib><creatorcontrib>Zhang, Quanshi</creatorcontrib><title>A Hypothesis for the Aesthetic Appreciation in Neural Networks</title><title>arXiv.org</title><description>This paper proposes a hypothesis for the aesthetic appreciation that aesthetic images make a neural network strengthen salient concepts and discard inessential concepts. In order to verify this hypothesis, we use multi-variate interactions to represent salient concepts and inessential concepts contained in images. Furthermore, we design a set of operations to revise images towards more beautiful ones. In experiments, we find that the revised images are more aesthetic than the original ones to some extent.</description><subject>Hypotheses</subject><subject>Neural networks</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSwc1TwqCzIL8lILc4sVkjLL1IAMhUcU4uBVElmsoJjQUFRanJmYklmfp5CZp6CX2ppUWIOkCopzy_KLuZhYE1LzClO5YXS3AzKbq4hzh66BUX5haVAU-Kz8kuL8oBS8UD7LE3MLMyNTY2JUwUAnHY4PA</recordid><startdate>20210731</startdate><enddate>20210731</enddate><creator>Xu, Cheng</creator><creator>Wang, Xin</creator><creator>Xue, Haotian</creator><creator>Liang, Zhengyang</creator><creator>Zhang, Quanshi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210731</creationdate><title>A Hypothesis for the Aesthetic Appreciation in Neural Networks</title><author>Xu, Cheng ; Wang, Xin ; Xue, Haotian ; Liang, Zhengyang ; Zhang, Quanshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25594687353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Hypotheses</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Cheng</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Xue, Haotian</creatorcontrib><creatorcontrib>Liang, Zhengyang</creatorcontrib><creatorcontrib>Zhang, Quanshi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Cheng</au><au>Wang, Xin</au><au>Xue, Haotian</au><au>Liang, Zhengyang</au><au>Zhang, Quanshi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>A Hypothesis for the Aesthetic Appreciation in Neural Networks</atitle><jtitle>arXiv.org</jtitle><date>2021-07-31</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>This paper proposes a hypothesis for the aesthetic appreciation that aesthetic images make a neural network strengthen salient concepts and discard inessential concepts. In order to verify this hypothesis, we use multi-variate interactions to represent salient concepts and inessential concepts contained in images. Furthermore, we design a set of operations to revise images towards more beautiful ones. In experiments, we find that the revised images are more aesthetic than the original ones to some extent.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-07 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2559468735 |
source | Free E- Journals |
subjects | Hypotheses Neural networks |
title | A Hypothesis for the Aesthetic Appreciation in Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T16%3A57%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=A%20Hypothesis%20for%20the%20Aesthetic%20Appreciation%20in%20Neural%20Networks&rft.jtitle=arXiv.org&rft.au=Xu,%20Cheng&rft.date=2021-07-31&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2559468735%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559468735&rft_id=info:pmid/&rfr_iscdi=true |