Numerical simulation of impulse waves in Cosserat media based on a time‐discontinuous Galerkin finite element method
The time‐discontinuous Galerkin finite element method (TDGFEM) has advantages in reducing spurious numerical oscillations and capturing discontinuities of solutions in space for high‐frequency dynamical problems. This article extends TDGFEM into Cosserat media to focus on impulse wave propagations,...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2021-09, Vol.122 (17), p.4507-4540 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4540 |
---|---|
container_issue | 17 |
container_start_page | 4507 |
container_title | International journal for numerical methods in engineering |
container_volume | 122 |
creator | Xiu, Chenxi Chu, Xihua Wan, Ji Wang, Jiao |
description | The time‐discontinuous Galerkin finite element method (TDGFEM) has advantages in reducing spurious numerical oscillations and capturing discontinuities of solutions in space for high‐frequency dynamical problems. This article extends TDGFEM into Cosserat media to focus on impulse wave propagations, involving rotational wave and effects of microstructures. The Cosserat continuum theory contains additional rotational degrees of freedom, leading to Cosserat compressive (P), shear (S), and rotational (R) waves. Therefore, three Cosserat wave propagations are simulated by TDGFEM under impulse loads in this article. Different orders (P1–P3) of temporal shape functions are presented for Cosserat nodal unknown vectors, leading to different matrix equations for TDGFEM. One‐dimensional numerical results show capacity and efficiency of TDGFEM simulating Cosserat impulse wave propagations. Analyses about time step, mesh density and accuracy of TDGFEM are given in one‐dimensional examples. Results simulated by three methods with artificial damping are compared with those by TDGFEM, which shows a higher efficiency for TDGFEM. Two‐dimensional results present the propagation characteristics of Cosserat impulse P, S, and R waves, and velocities of Cosserat P, S, and R waves are simulated by TDGFEM. The characteristic length and Cosserat shear modulus have a major influence on impulse S and R wave propagations. |
doi_str_mv | 10.1002/nme.6711 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559370863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559370863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-b3947b812a47278c9a20689fb1132969ccf104eddd1a5f248cc86c8bfdfbf1e53</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqUgcQRLbNikeJzmx0tUlYJUygbWkeOMhUtiFzsp6o4jcEZOgkvZsprFvO8bzSPkEtgEGOM3tsNJXgAckREwUSSMs-KYjOJKJJko4ZSchbBmDCBj6YhsV0OH3ijZ0mC6oZW9cZY6TU23GdqA9ENuMVBj6cyFgF72tMPGSFrLgA2NrKS96fD786sxQTnbGzu4IdCFbNG_xZw21vRIscUO7T7dv7rmnJxoGesv_uaYvNzNn2f3yfJp8TC7XSaKixSSOhXToi6By2nBi1IJyVleCl0DpFzkQikNbIpN04DMNJ-WSpW5Kmvd6FoDZumYXB16N969Dxj6au0Gb-PJimeZSAtW5mmkrg-U8vFJj7raeNNJv6uAVXurVbRa7a1GNDmgH6bF3b9ctXqc__I_WJ57cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559370863</pqid></control><display><type>article</type><title>Numerical simulation of impulse waves in Cosserat media based on a time‐discontinuous Galerkin finite element method</title><source>Access via Wiley Online Library</source><creator>Xiu, Chenxi ; Chu, Xihua ; Wan, Ji ; Wang, Jiao</creator><creatorcontrib>Xiu, Chenxi ; Chu, Xihua ; Wan, Ji ; Wang, Jiao</creatorcontrib><description>The time‐discontinuous Galerkin finite element method (TDGFEM) has advantages in reducing spurious numerical oscillations and capturing discontinuities of solutions in space for high‐frequency dynamical problems. This article extends TDGFEM into Cosserat media to focus on impulse wave propagations, involving rotational wave and effects of microstructures. The Cosserat continuum theory contains additional rotational degrees of freedom, leading to Cosserat compressive (P), shear (S), and rotational (R) waves. Therefore, three Cosserat wave propagations are simulated by TDGFEM under impulse loads in this article. Different orders (P1–P3) of temporal shape functions are presented for Cosserat nodal unknown vectors, leading to different matrix equations for TDGFEM. One‐dimensional numerical results show capacity and efficiency of TDGFEM simulating Cosserat impulse wave propagations. Analyses about time step, mesh density and accuracy of TDGFEM are given in one‐dimensional examples. Results simulated by three methods with artificial damping are compared with those by TDGFEM, which shows a higher efficiency for TDGFEM. Two‐dimensional results present the propagation characteristics of Cosserat impulse P, S, and R waves, and velocities of Cosserat P, S, and R waves are simulated by TDGFEM. The characteristic length and Cosserat shear modulus have a major influence on impulse S and R wave propagations.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6711</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>artificial damping ; Computer simulation ; Cosserat media ; Cosserat parameters ; Damping ; Discontinuity ; Finite element analysis ; Finite element method ; Galerkin method ; Impulse loading ; impulse wave ; Shape functions ; Shear modulus ; spurious numerical oscillations ; time‐discontinuous Galerkin finite element method ; Wave propagation</subject><ispartof>International journal for numerical methods in engineering, 2021-09, Vol.122 (17), p.4507-4540</ispartof><rights>2021 John Wiley & Sons Ltd.</rights><rights>2021 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-b3947b812a47278c9a20689fb1132969ccf104eddd1a5f248cc86c8bfdfbf1e53</citedby><cites>FETCH-LOGICAL-c2931-b3947b812a47278c9a20689fb1132969ccf104eddd1a5f248cc86c8bfdfbf1e53</cites><orcidid>0000-0001-9592-9442 ; 0000-0002-8629-8076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.6711$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.6711$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Xiu, Chenxi</creatorcontrib><creatorcontrib>Chu, Xihua</creatorcontrib><creatorcontrib>Wan, Ji</creatorcontrib><creatorcontrib>Wang, Jiao</creatorcontrib><title>Numerical simulation of impulse waves in Cosserat media based on a time‐discontinuous Galerkin finite element method</title><title>International journal for numerical methods in engineering</title><description>The time‐discontinuous Galerkin finite element method (TDGFEM) has advantages in reducing spurious numerical oscillations and capturing discontinuities of solutions in space for high‐frequency dynamical problems. This article extends TDGFEM into Cosserat media to focus on impulse wave propagations, involving rotational wave and effects of microstructures. The Cosserat continuum theory contains additional rotational degrees of freedom, leading to Cosserat compressive (P), shear (S), and rotational (R) waves. Therefore, three Cosserat wave propagations are simulated by TDGFEM under impulse loads in this article. Different orders (P1–P3) of temporal shape functions are presented for Cosserat nodal unknown vectors, leading to different matrix equations for TDGFEM. One‐dimensional numerical results show capacity and efficiency of TDGFEM simulating Cosserat impulse wave propagations. Analyses about time step, mesh density and accuracy of TDGFEM are given in one‐dimensional examples. Results simulated by three methods with artificial damping are compared with those by TDGFEM, which shows a higher efficiency for TDGFEM. Two‐dimensional results present the propagation characteristics of Cosserat impulse P, S, and R waves, and velocities of Cosserat P, S, and R waves are simulated by TDGFEM. The characteristic length and Cosserat shear modulus have a major influence on impulse S and R wave propagations.</description><subject>artificial damping</subject><subject>Computer simulation</subject><subject>Cosserat media</subject><subject>Cosserat parameters</subject><subject>Damping</subject><subject>Discontinuity</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>Impulse loading</subject><subject>impulse wave</subject><subject>Shape functions</subject><subject>Shear modulus</subject><subject>spurious numerical oscillations</subject><subject>time‐discontinuous Galerkin finite element method</subject><subject>Wave propagation</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqUgcQRLbNikeJzmx0tUlYJUygbWkeOMhUtiFzsp6o4jcEZOgkvZsprFvO8bzSPkEtgEGOM3tsNJXgAckREwUSSMs-KYjOJKJJko4ZSchbBmDCBj6YhsV0OH3ijZ0mC6oZW9cZY6TU23GdqA9ENuMVBj6cyFgF72tMPGSFrLgA2NrKS96fD786sxQTnbGzu4IdCFbNG_xZw21vRIscUO7T7dv7rmnJxoGesv_uaYvNzNn2f3yfJp8TC7XSaKixSSOhXToi6By2nBi1IJyVleCl0DpFzkQikNbIpN04DMNJ-WSpW5Kmvd6FoDZumYXB16N969Dxj6au0Gb-PJimeZSAtW5mmkrg-U8vFJj7raeNNJv6uAVXurVbRa7a1GNDmgH6bF3b9ctXqc__I_WJ57cg</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Xiu, Chenxi</creator><creator>Chu, Xihua</creator><creator>Wan, Ji</creator><creator>Wang, Jiao</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9592-9442</orcidid><orcidid>https://orcid.org/0000-0002-8629-8076</orcidid></search><sort><creationdate>20210915</creationdate><title>Numerical simulation of impulse waves in Cosserat media based on a time‐discontinuous Galerkin finite element method</title><author>Xiu, Chenxi ; Chu, Xihua ; Wan, Ji ; Wang, Jiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-b3947b812a47278c9a20689fb1132969ccf104eddd1a5f248cc86c8bfdfbf1e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>artificial damping</topic><topic>Computer simulation</topic><topic>Cosserat media</topic><topic>Cosserat parameters</topic><topic>Damping</topic><topic>Discontinuity</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>Impulse loading</topic><topic>impulse wave</topic><topic>Shape functions</topic><topic>Shear modulus</topic><topic>spurious numerical oscillations</topic><topic>time‐discontinuous Galerkin finite element method</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiu, Chenxi</creatorcontrib><creatorcontrib>Chu, Xihua</creatorcontrib><creatorcontrib>Wan, Ji</creatorcontrib><creatorcontrib>Wang, Jiao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiu, Chenxi</au><au>Chu, Xihua</au><au>Wan, Ji</au><au>Wang, Jiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of impulse waves in Cosserat media based on a time‐discontinuous Galerkin finite element method</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>122</volume><issue>17</issue><spage>4507</spage><epage>4540</epage><pages>4507-4540</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>The time‐discontinuous Galerkin finite element method (TDGFEM) has advantages in reducing spurious numerical oscillations and capturing discontinuities of solutions in space for high‐frequency dynamical problems. This article extends TDGFEM into Cosserat media to focus on impulse wave propagations, involving rotational wave and effects of microstructures. The Cosserat continuum theory contains additional rotational degrees of freedom, leading to Cosserat compressive (P), shear (S), and rotational (R) waves. Therefore, three Cosserat wave propagations are simulated by TDGFEM under impulse loads in this article. Different orders (P1–P3) of temporal shape functions are presented for Cosserat nodal unknown vectors, leading to different matrix equations for TDGFEM. One‐dimensional numerical results show capacity and efficiency of TDGFEM simulating Cosserat impulse wave propagations. Analyses about time step, mesh density and accuracy of TDGFEM are given in one‐dimensional examples. Results simulated by three methods with artificial damping are compared with those by TDGFEM, which shows a higher efficiency for TDGFEM. Two‐dimensional results present the propagation characteristics of Cosserat impulse P, S, and R waves, and velocities of Cosserat P, S, and R waves are simulated by TDGFEM. The characteristic length and Cosserat shear modulus have a major influence on impulse S and R wave propagations.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nme.6711</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0001-9592-9442</orcidid><orcidid>https://orcid.org/0000-0002-8629-8076</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2021-09, Vol.122 (17), p.4507-4540 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2559370863 |
source | Access via Wiley Online Library |
subjects | artificial damping Computer simulation Cosserat media Cosserat parameters Damping Discontinuity Finite element analysis Finite element method Galerkin method Impulse loading impulse wave Shape functions Shear modulus spurious numerical oscillations time‐discontinuous Galerkin finite element method Wave propagation |
title | Numerical simulation of impulse waves in Cosserat media based on a time‐discontinuous Galerkin finite element method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A00%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20impulse%20waves%20in%20Cosserat%20media%20based%20on%20a%20time%E2%80%90discontinuous%20Galerkin%20finite%20element%20method&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Xiu,%20Chenxi&rft.date=2021-09-15&rft.volume=122&rft.issue=17&rft.spage=4507&rft.epage=4540&rft.pages=4507-4540&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6711&rft_dat=%3Cproquest_cross%3E2559370863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559370863&rft_id=info:pmid/&rfr_iscdi=true |