Numerical simulation of impulse waves in Cosserat media based on a time‐discontinuous Galerkin finite element method

The time‐discontinuous Galerkin finite element method (TDGFEM) has advantages in reducing spurious numerical oscillations and capturing discontinuities of solutions in space for high‐frequency dynamical problems. This article extends TDGFEM into Cosserat media to focus on impulse wave propagations,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2021-09, Vol.122 (17), p.4507-4540
Hauptverfasser: Xiu, Chenxi, Chu, Xihua, Wan, Ji, Wang, Jiao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4540
container_issue 17
container_start_page 4507
container_title International journal for numerical methods in engineering
container_volume 122
creator Xiu, Chenxi
Chu, Xihua
Wan, Ji
Wang, Jiao
description The time‐discontinuous Galerkin finite element method (TDGFEM) has advantages in reducing spurious numerical oscillations and capturing discontinuities of solutions in space for high‐frequency dynamical problems. This article extends TDGFEM into Cosserat media to focus on impulse wave propagations, involving rotational wave and effects of microstructures. The Cosserat continuum theory contains additional rotational degrees of freedom, leading to Cosserat compressive (P), shear (S), and rotational (R) waves. Therefore, three Cosserat wave propagations are simulated by TDGFEM under impulse loads in this article. Different orders (P1–P3) of temporal shape functions are presented for Cosserat nodal unknown vectors, leading to different matrix equations for TDGFEM. One‐dimensional numerical results show capacity and efficiency of TDGFEM simulating Cosserat impulse wave propagations. Analyses about time step, mesh density and accuracy of TDGFEM are given in one‐dimensional examples. Results simulated by three methods with artificial damping are compared with those by TDGFEM, which shows a higher efficiency for TDGFEM. Two‐dimensional results present the propagation characteristics of Cosserat impulse P, S, and R waves, and velocities of Cosserat P, S, and R waves are simulated by TDGFEM. The characteristic length and Cosserat shear modulus have a major influence on impulse S and R wave propagations.
doi_str_mv 10.1002/nme.6711
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559370863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559370863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2931-b3947b812a47278c9a20689fb1132969ccf104eddd1a5f248cc86c8bfdfbf1e53</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqUgcQRLbNikeJzmx0tUlYJUygbWkeOMhUtiFzsp6o4jcEZOgkvZsprFvO8bzSPkEtgEGOM3tsNJXgAckREwUSSMs-KYjOJKJJko4ZSchbBmDCBj6YhsV0OH3ijZ0mC6oZW9cZY6TU23GdqA9ENuMVBj6cyFgF72tMPGSFrLgA2NrKS96fD786sxQTnbGzu4IdCFbNG_xZw21vRIscUO7T7dv7rmnJxoGesv_uaYvNzNn2f3yfJp8TC7XSaKixSSOhXToi6By2nBi1IJyVleCl0DpFzkQikNbIpN04DMNJ-WSpW5Kmvd6FoDZumYXB16N969Dxj6au0Gb-PJimeZSAtW5mmkrg-U8vFJj7raeNNJv6uAVXurVbRa7a1GNDmgH6bF3b9ctXqc__I_WJ57cg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559370863</pqid></control><display><type>article</type><title>Numerical simulation of impulse waves in Cosserat media based on a time‐discontinuous Galerkin finite element method</title><source>Access via Wiley Online Library</source><creator>Xiu, Chenxi ; Chu, Xihua ; Wan, Ji ; Wang, Jiao</creator><creatorcontrib>Xiu, Chenxi ; Chu, Xihua ; Wan, Ji ; Wang, Jiao</creatorcontrib><description>The time‐discontinuous Galerkin finite element method (TDGFEM) has advantages in reducing spurious numerical oscillations and capturing discontinuities of solutions in space for high‐frequency dynamical problems. This article extends TDGFEM into Cosserat media to focus on impulse wave propagations, involving rotational wave and effects of microstructures. The Cosserat continuum theory contains additional rotational degrees of freedom, leading to Cosserat compressive (P), shear (S), and rotational (R) waves. Therefore, three Cosserat wave propagations are simulated by TDGFEM under impulse loads in this article. Different orders (P1–P3) of temporal shape functions are presented for Cosserat nodal unknown vectors, leading to different matrix equations for TDGFEM. One‐dimensional numerical results show capacity and efficiency of TDGFEM simulating Cosserat impulse wave propagations. Analyses about time step, mesh density and accuracy of TDGFEM are given in one‐dimensional examples. Results simulated by three methods with artificial damping are compared with those by TDGFEM, which shows a higher efficiency for TDGFEM. Two‐dimensional results present the propagation characteristics of Cosserat impulse P, S, and R waves, and velocities of Cosserat P, S, and R waves are simulated by TDGFEM. The characteristic length and Cosserat shear modulus have a major influence on impulse S and R wave propagations.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6711</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>artificial damping ; Computer simulation ; Cosserat media ; Cosserat parameters ; Damping ; Discontinuity ; Finite element analysis ; Finite element method ; Galerkin method ; Impulse loading ; impulse wave ; Shape functions ; Shear modulus ; spurious numerical oscillations ; time‐discontinuous Galerkin finite element method ; Wave propagation</subject><ispartof>International journal for numerical methods in engineering, 2021-09, Vol.122 (17), p.4507-4540</ispartof><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>2021 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2931-b3947b812a47278c9a20689fb1132969ccf104eddd1a5f248cc86c8bfdfbf1e53</citedby><cites>FETCH-LOGICAL-c2931-b3947b812a47278c9a20689fb1132969ccf104eddd1a5f248cc86c8bfdfbf1e53</cites><orcidid>0000-0001-9592-9442 ; 0000-0002-8629-8076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.6711$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.6711$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Xiu, Chenxi</creatorcontrib><creatorcontrib>Chu, Xihua</creatorcontrib><creatorcontrib>Wan, Ji</creatorcontrib><creatorcontrib>Wang, Jiao</creatorcontrib><title>Numerical simulation of impulse waves in Cosserat media based on a time‐discontinuous Galerkin finite element method</title><title>International journal for numerical methods in engineering</title><description>The time‐discontinuous Galerkin finite element method (TDGFEM) has advantages in reducing spurious numerical oscillations and capturing discontinuities of solutions in space for high‐frequency dynamical problems. This article extends TDGFEM into Cosserat media to focus on impulse wave propagations, involving rotational wave and effects of microstructures. The Cosserat continuum theory contains additional rotational degrees of freedom, leading to Cosserat compressive (P), shear (S), and rotational (R) waves. Therefore, three Cosserat wave propagations are simulated by TDGFEM under impulse loads in this article. Different orders (P1–P3) of temporal shape functions are presented for Cosserat nodal unknown vectors, leading to different matrix equations for TDGFEM. One‐dimensional numerical results show capacity and efficiency of TDGFEM simulating Cosserat impulse wave propagations. Analyses about time step, mesh density and accuracy of TDGFEM are given in one‐dimensional examples. Results simulated by three methods with artificial damping are compared with those by TDGFEM, which shows a higher efficiency for TDGFEM. Two‐dimensional results present the propagation characteristics of Cosserat impulse P, S, and R waves, and velocities of Cosserat P, S, and R waves are simulated by TDGFEM. The characteristic length and Cosserat shear modulus have a major influence on impulse S and R wave propagations.</description><subject>artificial damping</subject><subject>Computer simulation</subject><subject>Cosserat media</subject><subject>Cosserat parameters</subject><subject>Damping</subject><subject>Discontinuity</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Galerkin method</subject><subject>Impulse loading</subject><subject>impulse wave</subject><subject>Shape functions</subject><subject>Shear modulus</subject><subject>spurious numerical oscillations</subject><subject>time‐discontinuous Galerkin finite element method</subject><subject>Wave propagation</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqUgcQRLbNikeJzmx0tUlYJUygbWkeOMhUtiFzsp6o4jcEZOgkvZsprFvO8bzSPkEtgEGOM3tsNJXgAckREwUSSMs-KYjOJKJJko4ZSchbBmDCBj6YhsV0OH3ijZ0mC6oZW9cZY6TU23GdqA9ENuMVBj6cyFgF72tMPGSFrLgA2NrKS96fD786sxQTnbGzu4IdCFbNG_xZw21vRIscUO7T7dv7rmnJxoGesv_uaYvNzNn2f3yfJp8TC7XSaKixSSOhXToi6By2nBi1IJyVleCl0DpFzkQikNbIpN04DMNJ-WSpW5Kmvd6FoDZumYXB16N969Dxj6au0Gb-PJimeZSAtW5mmkrg-U8vFJj7raeNNJv6uAVXurVbRa7a1GNDmgH6bF3b9ctXqc__I_WJ57cg</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Xiu, Chenxi</creator><creator>Chu, Xihua</creator><creator>Wan, Ji</creator><creator>Wang, Jiao</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9592-9442</orcidid><orcidid>https://orcid.org/0000-0002-8629-8076</orcidid></search><sort><creationdate>20210915</creationdate><title>Numerical simulation of impulse waves in Cosserat media based on a time‐discontinuous Galerkin finite element method</title><author>Xiu, Chenxi ; Chu, Xihua ; Wan, Ji ; Wang, Jiao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2931-b3947b812a47278c9a20689fb1132969ccf104eddd1a5f248cc86c8bfdfbf1e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>artificial damping</topic><topic>Computer simulation</topic><topic>Cosserat media</topic><topic>Cosserat parameters</topic><topic>Damping</topic><topic>Discontinuity</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Galerkin method</topic><topic>Impulse loading</topic><topic>impulse wave</topic><topic>Shape functions</topic><topic>Shear modulus</topic><topic>spurious numerical oscillations</topic><topic>time‐discontinuous Galerkin finite element method</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiu, Chenxi</creatorcontrib><creatorcontrib>Chu, Xihua</creatorcontrib><creatorcontrib>Wan, Ji</creatorcontrib><creatorcontrib>Wang, Jiao</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiu, Chenxi</au><au>Chu, Xihua</au><au>Wan, Ji</au><au>Wang, Jiao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical simulation of impulse waves in Cosserat media based on a time‐discontinuous Galerkin finite element method</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>122</volume><issue>17</issue><spage>4507</spage><epage>4540</epage><pages>4507-4540</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>The time‐discontinuous Galerkin finite element method (TDGFEM) has advantages in reducing spurious numerical oscillations and capturing discontinuities of solutions in space for high‐frequency dynamical problems. This article extends TDGFEM into Cosserat media to focus on impulse wave propagations, involving rotational wave and effects of microstructures. The Cosserat continuum theory contains additional rotational degrees of freedom, leading to Cosserat compressive (P), shear (S), and rotational (R) waves. Therefore, three Cosserat wave propagations are simulated by TDGFEM under impulse loads in this article. Different orders (P1–P3) of temporal shape functions are presented for Cosserat nodal unknown vectors, leading to different matrix equations for TDGFEM. One‐dimensional numerical results show capacity and efficiency of TDGFEM simulating Cosserat impulse wave propagations. Analyses about time step, mesh density and accuracy of TDGFEM are given in one‐dimensional examples. Results simulated by three methods with artificial damping are compared with those by TDGFEM, which shows a higher efficiency for TDGFEM. Two‐dimensional results present the propagation characteristics of Cosserat impulse P, S, and R waves, and velocities of Cosserat P, S, and R waves are simulated by TDGFEM. The characteristic length and Cosserat shear modulus have a major influence on impulse S and R wave propagations.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.6711</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0001-9592-9442</orcidid><orcidid>https://orcid.org/0000-0002-8629-8076</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2021-09, Vol.122 (17), p.4507-4540
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2559370863
source Access via Wiley Online Library
subjects artificial damping
Computer simulation
Cosserat media
Cosserat parameters
Damping
Discontinuity
Finite element analysis
Finite element method
Galerkin method
Impulse loading
impulse wave
Shape functions
Shear modulus
spurious numerical oscillations
time‐discontinuous Galerkin finite element method
Wave propagation
title Numerical simulation of impulse waves in Cosserat media based on a time‐discontinuous Galerkin finite element method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T20%3A00%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20simulation%20of%20impulse%20waves%20in%20Cosserat%20media%20based%20on%20a%20time%E2%80%90discontinuous%20Galerkin%20finite%20element%20method&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Xiu,%20Chenxi&rft.date=2021-09-15&rft.volume=122&rft.issue=17&rft.spage=4507&rft.epage=4540&rft.pages=4507-4540&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6711&rft_dat=%3Cproquest_cross%3E2559370863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559370863&rft_id=info:pmid/&rfr_iscdi=true