Modeling and discretization of flow in porous media with thin, full‐tensor permeability inclusions
When modeling fluid flow in fractured reservoirs, it is common to represent the fractures as lower‐dimensional inclusions embedded in the host medium. Existing discretizations of flow in porous media with thin inclusions assume that the principal directions of the inclusion permeability tensor are a...
Gespeichert in:
Veröffentlicht in: | International journal for numerical methods in engineering 2021-09, Vol.122 (17), p.4730-4750 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4750 |
---|---|
container_issue | 17 |
container_start_page | 4730 |
container_title | International journal for numerical methods in engineering |
container_volume | 122 |
creator | Starnoni, Michele Berre, Inga Keilegavlen, Eirik Martin Nordbotten, Jan |
description | When modeling fluid flow in fractured reservoirs, it is common to represent the fractures as lower‐dimensional inclusions embedded in the host medium. Existing discretizations of flow in porous media with thin inclusions assume that the principal directions of the inclusion permeability tensor are aligned with the inclusion orientation. While this modeling assumption works well with tensile fractures, it may fail in the context of faults, where the damage zone surrounding the main slip surface may introduce anisotropy that is not aligned with the main fault orientation. In this article, we introduce a generalized dimensional reduced model which preserves full‐tensor permeability effects also in the out‐of‐plane direction of the inclusion. The governing equations of flow for the lower‐dimensional objects are obtained through vertical averaging. We present a framework for discretization of the resulting mixed‐dimensional problem, aimed at easy adaptation of existing simulation tools. We give numerical examples that show the failure of existing formulations when applied to anisotropic faulted porous media, and go on to show the convergence of our method in both two‐dimensional and three‐dimensional. |
doi_str_mv | 10.1002/nme.6744 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559370560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559370560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3274-78def8d802601be9b2b6854176e3dd5f4c9094ec80c0b976ac55fc14cf70319f3</originalsourceid><addsrcrecordid>eNp10EtOwzAQBmALgUQpSBzBEhsWpIyTOI6XqOIltbCBtZX4QV05cbATVWXFETgjJyGlbFnNYr75R_oROicwIwDpddvoWcHy_ABNCHCWQArsEE3GFU8oL8kxOolxDUAIhWyC1NIr7Wz7hqtWYWWjDLq3H1VvfYu9wcb5DbYt7nzwQ8SNVrbCG9uvcL-y7RU2g3Pfn1-9bqMPuNOh0VVtne2345V0Qxxz4ik6MpWL-uxvTtHr3e3L_CFZPN8_zm8WicxSliesVNqUqoS0AFJrXqd1UdKcsEJnSlGTSw4817IECTVnRSUpNZLk0jDICDfZFF3sc7vg3wcde7H2Q2jHlyKllGcMaAGjutwrGXyMQRvRBdtUYSsIiF2HYuxQ7DocabKnG-v09l8nnpa3v_4Hqnt0tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559370560</pqid></control><display><type>article</type><title>Modeling and discretization of flow in porous media with thin, full‐tensor permeability inclusions</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Starnoni, Michele ; Berre, Inga ; Keilegavlen, Eirik ; Martin Nordbotten, Jan</creator><creatorcontrib>Starnoni, Michele ; Berre, Inga ; Keilegavlen, Eirik ; Martin Nordbotten, Jan</creatorcontrib><description>When modeling fluid flow in fractured reservoirs, it is common to represent the fractures as lower‐dimensional inclusions embedded in the host medium. Existing discretizations of flow in porous media with thin inclusions assume that the principal directions of the inclusion permeability tensor are aligned with the inclusion orientation. While this modeling assumption works well with tensile fractures, it may fail in the context of faults, where the damage zone surrounding the main slip surface may introduce anisotropy that is not aligned with the main fault orientation. In this article, we introduce a generalized dimensional reduced model which preserves full‐tensor permeability effects also in the out‐of‐plane direction of the inclusion. The governing equations of flow for the lower‐dimensional objects are obtained through vertical averaging. We present a framework for discretization of the resulting mixed‐dimensional problem, aimed at easy adaptation of existing simulation tools. We give numerical examples that show the failure of existing formulations when applied to anisotropic faulted porous media, and go on to show the convergence of our method in both two‐dimensional and three‐dimensional.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6744</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Anisotropy ; Computational fluid dynamics ; Discretization ; faults ; flow ; Fluid flow ; Fractured reservoirs ; Fractures ; Geological faults ; Inclusions ; Mathematical analysis ; mixed‐dimensional ; Permeability ; Porous media ; Tensors</subject><ispartof>International journal for numerical methods in engineering, 2021-09, Vol.122 (17), p.4730-4750</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3274-78def8d802601be9b2b6854176e3dd5f4c9094ec80c0b976ac55fc14cf70319f3</citedby><cites>FETCH-LOGICAL-c3274-78def8d802601be9b2b6854176e3dd5f4c9094ec80c0b976ac55fc14cf70319f3</cites><orcidid>0000-0002-8552-6997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.6744$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.6744$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Starnoni, Michele</creatorcontrib><creatorcontrib>Berre, Inga</creatorcontrib><creatorcontrib>Keilegavlen, Eirik</creatorcontrib><creatorcontrib>Martin Nordbotten, Jan</creatorcontrib><title>Modeling and discretization of flow in porous media with thin, full‐tensor permeability inclusions</title><title>International journal for numerical methods in engineering</title><description>When modeling fluid flow in fractured reservoirs, it is common to represent the fractures as lower‐dimensional inclusions embedded in the host medium. Existing discretizations of flow in porous media with thin inclusions assume that the principal directions of the inclusion permeability tensor are aligned with the inclusion orientation. While this modeling assumption works well with tensile fractures, it may fail in the context of faults, where the damage zone surrounding the main slip surface may introduce anisotropy that is not aligned with the main fault orientation. In this article, we introduce a generalized dimensional reduced model which preserves full‐tensor permeability effects also in the out‐of‐plane direction of the inclusion. The governing equations of flow for the lower‐dimensional objects are obtained through vertical averaging. We present a framework for discretization of the resulting mixed‐dimensional problem, aimed at easy adaptation of existing simulation tools. We give numerical examples that show the failure of existing formulations when applied to anisotropic faulted porous media, and go on to show the convergence of our method in both two‐dimensional and three‐dimensional.</description><subject>Anisotropy</subject><subject>Computational fluid dynamics</subject><subject>Discretization</subject><subject>faults</subject><subject>flow</subject><subject>Fluid flow</subject><subject>Fractured reservoirs</subject><subject>Fractures</subject><subject>Geological faults</subject><subject>Inclusions</subject><subject>Mathematical analysis</subject><subject>mixed‐dimensional</subject><subject>Permeability</subject><subject>Porous media</subject><subject>Tensors</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10EtOwzAQBmALgUQpSBzBEhsWpIyTOI6XqOIltbCBtZX4QV05cbATVWXFETgjJyGlbFnNYr75R_oROicwIwDpddvoWcHy_ABNCHCWQArsEE3GFU8oL8kxOolxDUAIhWyC1NIr7Wz7hqtWYWWjDLq3H1VvfYu9wcb5DbYt7nzwQ8SNVrbCG9uvcL-y7RU2g3Pfn1-9bqMPuNOh0VVtne2345V0Qxxz4ik6MpWL-uxvTtHr3e3L_CFZPN8_zm8WicxSliesVNqUqoS0AFJrXqd1UdKcsEJnSlGTSw4817IECTVnRSUpNZLk0jDICDfZFF3sc7vg3wcde7H2Q2jHlyKllGcMaAGjutwrGXyMQRvRBdtUYSsIiF2HYuxQ7DocabKnG-v09l8nnpa3v_4Hqnt0tw</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Starnoni, Michele</creator><creator>Berre, Inga</creator><creator>Keilegavlen, Eirik</creator><creator>Martin Nordbotten, Jan</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8552-6997</orcidid></search><sort><creationdate>20210915</creationdate><title>Modeling and discretization of flow in porous media with thin, full‐tensor permeability inclusions</title><author>Starnoni, Michele ; Berre, Inga ; Keilegavlen, Eirik ; Martin Nordbotten, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3274-78def8d802601be9b2b6854176e3dd5f4c9094ec80c0b976ac55fc14cf70319f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Computational fluid dynamics</topic><topic>Discretization</topic><topic>faults</topic><topic>flow</topic><topic>Fluid flow</topic><topic>Fractured reservoirs</topic><topic>Fractures</topic><topic>Geological faults</topic><topic>Inclusions</topic><topic>Mathematical analysis</topic><topic>mixed‐dimensional</topic><topic>Permeability</topic><topic>Porous media</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starnoni, Michele</creatorcontrib><creatorcontrib>Berre, Inga</creatorcontrib><creatorcontrib>Keilegavlen, Eirik</creatorcontrib><creatorcontrib>Martin Nordbotten, Jan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starnoni, Michele</au><au>Berre, Inga</au><au>Keilegavlen, Eirik</au><au>Martin Nordbotten, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and discretization of flow in porous media with thin, full‐tensor permeability inclusions</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>122</volume><issue>17</issue><spage>4730</spage><epage>4750</epage><pages>4730-4750</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>When modeling fluid flow in fractured reservoirs, it is common to represent the fractures as lower‐dimensional inclusions embedded in the host medium. Existing discretizations of flow in porous media with thin inclusions assume that the principal directions of the inclusion permeability tensor are aligned with the inclusion orientation. While this modeling assumption works well with tensile fractures, it may fail in the context of faults, where the damage zone surrounding the main slip surface may introduce anisotropy that is not aligned with the main fault orientation. In this article, we introduce a generalized dimensional reduced model which preserves full‐tensor permeability effects also in the out‐of‐plane direction of the inclusion. The governing equations of flow for the lower‐dimensional objects are obtained through vertical averaging. We present a framework for discretization of the resulting mixed‐dimensional problem, aimed at easy adaptation of existing simulation tools. We give numerical examples that show the failure of existing formulations when applied to anisotropic faulted porous media, and go on to show the convergence of our method in both two‐dimensional and three‐dimensional.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/nme.6744</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8552-6997</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2021-09, Vol.122 (17), p.4730-4750 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_journals_2559370560 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Anisotropy Computational fluid dynamics Discretization faults flow Fluid flow Fractured reservoirs Fractures Geological faults Inclusions Mathematical analysis mixed‐dimensional Permeability Porous media Tensors |
title | Modeling and discretization of flow in porous media with thin, full‐tensor permeability inclusions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20discretization%20of%20flow%20in%20porous%20media%20with%20thin,%20full%E2%80%90tensor%20permeability%20inclusions&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Starnoni,%20Michele&rft.date=2021-09-15&rft.volume=122&rft.issue=17&rft.spage=4730&rft.epage=4750&rft.pages=4730-4750&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6744&rft_dat=%3Cproquest_cross%3E2559370560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559370560&rft_id=info:pmid/&rfr_iscdi=true |