Modeling and discretization of flow in porous media with thin, full‐tensor permeability inclusions

When modeling fluid flow in fractured reservoirs, it is common to represent the fractures as lower‐dimensional inclusions embedded in the host medium. Existing discretizations of flow in porous media with thin inclusions assume that the principal directions of the inclusion permeability tensor are a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2021-09, Vol.122 (17), p.4730-4750
Hauptverfasser: Starnoni, Michele, Berre, Inga, Keilegavlen, Eirik, Martin Nordbotten, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4750
container_issue 17
container_start_page 4730
container_title International journal for numerical methods in engineering
container_volume 122
creator Starnoni, Michele
Berre, Inga
Keilegavlen, Eirik
Martin Nordbotten, Jan
description When modeling fluid flow in fractured reservoirs, it is common to represent the fractures as lower‐dimensional inclusions embedded in the host medium. Existing discretizations of flow in porous media with thin inclusions assume that the principal directions of the inclusion permeability tensor are aligned with the inclusion orientation. While this modeling assumption works well with tensile fractures, it may fail in the context of faults, where the damage zone surrounding the main slip surface may introduce anisotropy that is not aligned with the main fault orientation. In this article, we introduce a generalized dimensional reduced model which preserves full‐tensor permeability effects also in the out‐of‐plane direction of the inclusion. The governing equations of flow for the lower‐dimensional objects are obtained through vertical averaging. We present a framework for discretization of the resulting mixed‐dimensional problem, aimed at easy adaptation of existing simulation tools. We give numerical examples that show the failure of existing formulations when applied to anisotropic faulted porous media, and go on to show the convergence of our method in both two‐dimensional and three‐dimensional.
doi_str_mv 10.1002/nme.6744
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559370560</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559370560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3274-78def8d802601be9b2b6854176e3dd5f4c9094ec80c0b976ac55fc14cf70319f3</originalsourceid><addsrcrecordid>eNp10EtOwzAQBmALgUQpSBzBEhsWpIyTOI6XqOIltbCBtZX4QV05cbATVWXFETgjJyGlbFnNYr75R_oROicwIwDpddvoWcHy_ABNCHCWQArsEE3GFU8oL8kxOolxDUAIhWyC1NIr7Wz7hqtWYWWjDLq3H1VvfYu9wcb5DbYt7nzwQ8SNVrbCG9uvcL-y7RU2g3Pfn1-9bqMPuNOh0VVtne2345V0Qxxz4ik6MpWL-uxvTtHr3e3L_CFZPN8_zm8WicxSliesVNqUqoS0AFJrXqd1UdKcsEJnSlGTSw4817IECTVnRSUpNZLk0jDICDfZFF3sc7vg3wcde7H2Q2jHlyKllGcMaAGjutwrGXyMQRvRBdtUYSsIiF2HYuxQ7DocabKnG-v09l8nnpa3v_4Hqnt0tw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559370560</pqid></control><display><type>article</type><title>Modeling and discretization of flow in porous media with thin, full‐tensor permeability inclusions</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Starnoni, Michele ; Berre, Inga ; Keilegavlen, Eirik ; Martin Nordbotten, Jan</creator><creatorcontrib>Starnoni, Michele ; Berre, Inga ; Keilegavlen, Eirik ; Martin Nordbotten, Jan</creatorcontrib><description>When modeling fluid flow in fractured reservoirs, it is common to represent the fractures as lower‐dimensional inclusions embedded in the host medium. Existing discretizations of flow in porous media with thin inclusions assume that the principal directions of the inclusion permeability tensor are aligned with the inclusion orientation. While this modeling assumption works well with tensile fractures, it may fail in the context of faults, where the damage zone surrounding the main slip surface may introduce anisotropy that is not aligned with the main fault orientation. In this article, we introduce a generalized dimensional reduced model which preserves full‐tensor permeability effects also in the out‐of‐plane direction of the inclusion. The governing equations of flow for the lower‐dimensional objects are obtained through vertical averaging. We present a framework for discretization of the resulting mixed‐dimensional problem, aimed at easy adaptation of existing simulation tools. We give numerical examples that show the failure of existing formulations when applied to anisotropic faulted porous media, and go on to show the convergence of our method in both two‐dimensional and three‐dimensional.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.6744</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Anisotropy ; Computational fluid dynamics ; Discretization ; faults ; flow ; Fluid flow ; Fractured reservoirs ; Fractures ; Geological faults ; Inclusions ; Mathematical analysis ; mixed‐dimensional ; Permeability ; Porous media ; Tensors</subject><ispartof>International journal for numerical methods in engineering, 2021-09, Vol.122 (17), p.4730-4750</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3274-78def8d802601be9b2b6854176e3dd5f4c9094ec80c0b976ac55fc14cf70319f3</citedby><cites>FETCH-LOGICAL-c3274-78def8d802601be9b2b6854176e3dd5f4c9094ec80c0b976ac55fc14cf70319f3</cites><orcidid>0000-0002-8552-6997</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.6744$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.6744$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids></links><search><creatorcontrib>Starnoni, Michele</creatorcontrib><creatorcontrib>Berre, Inga</creatorcontrib><creatorcontrib>Keilegavlen, Eirik</creatorcontrib><creatorcontrib>Martin Nordbotten, Jan</creatorcontrib><title>Modeling and discretization of flow in porous media with thin, full‐tensor permeability inclusions</title><title>International journal for numerical methods in engineering</title><description>When modeling fluid flow in fractured reservoirs, it is common to represent the fractures as lower‐dimensional inclusions embedded in the host medium. Existing discretizations of flow in porous media with thin inclusions assume that the principal directions of the inclusion permeability tensor are aligned with the inclusion orientation. While this modeling assumption works well with tensile fractures, it may fail in the context of faults, where the damage zone surrounding the main slip surface may introduce anisotropy that is not aligned with the main fault orientation. In this article, we introduce a generalized dimensional reduced model which preserves full‐tensor permeability effects also in the out‐of‐plane direction of the inclusion. The governing equations of flow for the lower‐dimensional objects are obtained through vertical averaging. We present a framework for discretization of the resulting mixed‐dimensional problem, aimed at easy adaptation of existing simulation tools. We give numerical examples that show the failure of existing formulations when applied to anisotropic faulted porous media, and go on to show the convergence of our method in both two‐dimensional and three‐dimensional.</description><subject>Anisotropy</subject><subject>Computational fluid dynamics</subject><subject>Discretization</subject><subject>faults</subject><subject>flow</subject><subject>Fluid flow</subject><subject>Fractured reservoirs</subject><subject>Fractures</subject><subject>Geological faults</subject><subject>Inclusions</subject><subject>Mathematical analysis</subject><subject>mixed‐dimensional</subject><subject>Permeability</subject><subject>Porous media</subject><subject>Tensors</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp10EtOwzAQBmALgUQpSBzBEhsWpIyTOI6XqOIltbCBtZX4QV05cbATVWXFETgjJyGlbFnNYr75R_oROicwIwDpddvoWcHy_ABNCHCWQArsEE3GFU8oL8kxOolxDUAIhWyC1NIr7Wz7hqtWYWWjDLq3H1VvfYu9wcb5DbYt7nzwQ8SNVrbCG9uvcL-y7RU2g3Pfn1-9bqMPuNOh0VVtne2345V0Qxxz4ik6MpWL-uxvTtHr3e3L_CFZPN8_zm8WicxSliesVNqUqoS0AFJrXqd1UdKcsEJnSlGTSw4817IECTVnRSUpNZLk0jDICDfZFF3sc7vg3wcde7H2Q2jHlyKllGcMaAGjutwrGXyMQRvRBdtUYSsIiF2HYuxQ7DocabKnG-v09l8nnpa3v_4Hqnt0tw</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Starnoni, Michele</creator><creator>Berre, Inga</creator><creator>Keilegavlen, Eirik</creator><creator>Martin Nordbotten, Jan</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8552-6997</orcidid></search><sort><creationdate>20210915</creationdate><title>Modeling and discretization of flow in porous media with thin, full‐tensor permeability inclusions</title><author>Starnoni, Michele ; Berre, Inga ; Keilegavlen, Eirik ; Martin Nordbotten, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3274-78def8d802601be9b2b6854176e3dd5f4c9094ec80c0b976ac55fc14cf70319f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Anisotropy</topic><topic>Computational fluid dynamics</topic><topic>Discretization</topic><topic>faults</topic><topic>flow</topic><topic>Fluid flow</topic><topic>Fractured reservoirs</topic><topic>Fractures</topic><topic>Geological faults</topic><topic>Inclusions</topic><topic>Mathematical analysis</topic><topic>mixed‐dimensional</topic><topic>Permeability</topic><topic>Porous media</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Starnoni, Michele</creatorcontrib><creatorcontrib>Berre, Inga</creatorcontrib><creatorcontrib>Keilegavlen, Eirik</creatorcontrib><creatorcontrib>Martin Nordbotten, Jan</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Starnoni, Michele</au><au>Berre, Inga</au><au>Keilegavlen, Eirik</au><au>Martin Nordbotten, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and discretization of flow in porous media with thin, full‐tensor permeability inclusions</atitle><jtitle>International journal for numerical methods in engineering</jtitle><date>2021-09-15</date><risdate>2021</risdate><volume>122</volume><issue>17</issue><spage>4730</spage><epage>4750</epage><pages>4730-4750</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><abstract>When modeling fluid flow in fractured reservoirs, it is common to represent the fractures as lower‐dimensional inclusions embedded in the host medium. Existing discretizations of flow in porous media with thin inclusions assume that the principal directions of the inclusion permeability tensor are aligned with the inclusion orientation. While this modeling assumption works well with tensile fractures, it may fail in the context of faults, where the damage zone surrounding the main slip surface may introduce anisotropy that is not aligned with the main fault orientation. In this article, we introduce a generalized dimensional reduced model which preserves full‐tensor permeability effects also in the out‐of‐plane direction of the inclusion. The governing equations of flow for the lower‐dimensional objects are obtained through vertical averaging. We present a framework for discretization of the resulting mixed‐dimensional problem, aimed at easy adaptation of existing simulation tools. We give numerical examples that show the failure of existing formulations when applied to anisotropic faulted porous media, and go on to show the convergence of our method in both two‐dimensional and three‐dimensional.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/nme.6744</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-8552-6997</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2021-09, Vol.122 (17), p.4730-4750
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_journals_2559370560
source Wiley Online Library - AutoHoldings Journals
subjects Anisotropy
Computational fluid dynamics
Discretization
faults
flow
Fluid flow
Fractured reservoirs
Fractures
Geological faults
Inclusions
Mathematical analysis
mixed‐dimensional
Permeability
Porous media
Tensors
title Modeling and discretization of flow in porous media with thin, full‐tensor permeability inclusions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T08%3A52%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20discretization%20of%20flow%20in%20porous%20media%20with%20thin,%20full%E2%80%90tensor%20permeability%20inclusions&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Starnoni,%20Michele&rft.date=2021-09-15&rft.volume=122&rft.issue=17&rft.spage=4730&rft.epage=4750&rft.pages=4730-4750&rft.issn=0029-5981&rft.eissn=1097-0207&rft_id=info:doi/10.1002/nme.6744&rft_dat=%3Cproquest_cross%3E2559370560%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559370560&rft_id=info:pmid/&rfr_iscdi=true