Rheological characterization of flow inception of thixotropic yield stress fluids using vane and T-bar geometries

In this work, two geometries are studied, the vane and the T-bar, which are best suited for assessing the start-up flow of thixotropic yield stress fluids because they minimize the sample disturbance. Based on step-shear measurements with the vane geometry at different angular velocities and on a wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rheologica acta 2021-09, Vol.60 (9), p.531-542
Hauptverfasser: Teoman, Baran, Marron, Greggory, Potanin, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 542
container_issue 9
container_start_page 531
container_title Rheologica acta
container_volume 60
creator Teoman, Baran
Marron, Greggory
Potanin, Andrei
description In this work, two geometries are studied, the vane and the T-bar, which are best suited for assessing the start-up flow of thixotropic yield stress fluids because they minimize the sample disturbance. Based on step-shear measurements with the vane geometry at different angular velocities and on a wide range of products, mostly commercial toothpastes, we calculate the torque on the T-bar using computational fluid dynamics (CFD). The results are compared to the previously suggested approximate theory by Anderson and Meeten (AMT) and extensive original experiments. It turns out that the agreement between CFD, AMT, and the experimental data depends primarily on the shape of the flow curve which may be quantified by the fluid flow index, N , defined in the shear rate range which represents the flow around the rotating rod of the T-bar. While the CFD and AMT predictions agree well with each other (R 2  = 0.98), they both underestimate the experimental data although the experimental-to-predicted ratio also correlates to N (R 2  = 0.84) going up from 1 to around 2 as N increases from 0.1 to 0.5. This suggests that when using the T-bar for viscosity measurements, the user needs to take into account the flow index to which end a simple estimate of the effective shear rate is suggested also being a function of N .
doi_str_mv 10.1007/s00397-021-01282-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559346018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559346018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c249t-f0c5500fd806b000b06db965f683648842b693acce0dd55cc4d1b7f7976dbb743</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJmvTjKItfsCDIeg5pknazdJtu0qrrr7drFW-eBmae9x14ELqkcE0BspsIkBQZAUYJUJYzwo_QjPJEECpYfoxm410QLig9RWcxbgBolmZshnYva-sbXzutGqzXKijd2-A-Ve98i32Fq8a_Y9dq2_1u-rX78H3wndN472xjcOyDjXFEB2ciHqJra_ymWotVa_CKlCrg2vqt7YOz8RydVKqJ9uJnztHr_d1q8UiWzw9Pi9sl0YwXPalACwFQmRzSEgBKSE1ZpKJK8yTlec5ZmRaJ0tqCMUJozQ0tsyorspErM57M0dXU2wW_G2zs5cYPoR1fSiZEkfAUaD5SbKJ08DEGW8kuuK0Ke0lBHtTKSa0c1cpvtfJQnUyhOMJtbcNf9T-pLyrIfeI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559346018</pqid></control><display><type>article</type><title>Rheological characterization of flow inception of thixotropic yield stress fluids using vane and T-bar geometries</title><source>SpringerNature Journals</source><creator>Teoman, Baran ; Marron, Greggory ; Potanin, Andrei</creator><creatorcontrib>Teoman, Baran ; Marron, Greggory ; Potanin, Andrei</creatorcontrib><description>In this work, two geometries are studied, the vane and the T-bar, which are best suited for assessing the start-up flow of thixotropic yield stress fluids because they minimize the sample disturbance. Based on step-shear measurements with the vane geometry at different angular velocities and on a wide range of products, mostly commercial toothpastes, we calculate the torque on the T-bar using computational fluid dynamics (CFD). The results are compared to the previously suggested approximate theory by Anderson and Meeten (AMT) and extensive original experiments. It turns out that the agreement between CFD, AMT, and the experimental data depends primarily on the shape of the flow curve which may be quantified by the fluid flow index, N , defined in the shear rate range which represents the flow around the rotating rod of the T-bar. While the CFD and AMT predictions agree well with each other (R 2  = 0.98), they both underestimate the experimental data although the experimental-to-predicted ratio also correlates to N (R 2  = 0.84) going up from 1 to around 2 as N increases from 0.1 to 0.5. This suggests that when using the T-bar for viscosity measurements, the user needs to take into account the flow index to which end a simple estimate of the effective shear rate is suggested also being a function of N .</description><identifier>ISSN: 0035-4511</identifier><identifier>EISSN: 1435-1528</identifier><identifier>DOI: 10.1007/s00397-021-01282-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Angular velocity ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Computational fluid dynamics ; Fluid flow ; Food Science ; Materials Science ; Mechanical Engineering ; Original Contribution ; Polymer Sciences ; Rheological properties ; Sample disturbance ; Shear rate ; Soft and Granular Matter ; Toothpaste ; Viscosity measurement ; Yield strength ; Yield stress</subject><ispartof>Rheologica acta, 2021-09, Vol.60 (9), p.531-542</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c249t-f0c5500fd806b000b06db965f683648842b693acce0dd55cc4d1b7f7976dbb743</citedby><cites>FETCH-LOGICAL-c249t-f0c5500fd806b000b06db965f683648842b693acce0dd55cc4d1b7f7976dbb743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00397-021-01282-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00397-021-01282-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Teoman, Baran</creatorcontrib><creatorcontrib>Marron, Greggory</creatorcontrib><creatorcontrib>Potanin, Andrei</creatorcontrib><title>Rheological characterization of flow inception of thixotropic yield stress fluids using vane and T-bar geometries</title><title>Rheologica acta</title><addtitle>Rheol Acta</addtitle><description>In this work, two geometries are studied, the vane and the T-bar, which are best suited for assessing the start-up flow of thixotropic yield stress fluids because they minimize the sample disturbance. Based on step-shear measurements with the vane geometry at different angular velocities and on a wide range of products, mostly commercial toothpastes, we calculate the torque on the T-bar using computational fluid dynamics (CFD). The results are compared to the previously suggested approximate theory by Anderson and Meeten (AMT) and extensive original experiments. It turns out that the agreement between CFD, AMT, and the experimental data depends primarily on the shape of the flow curve which may be quantified by the fluid flow index, N , defined in the shear rate range which represents the flow around the rotating rod of the T-bar. While the CFD and AMT predictions agree well with each other (R 2  = 0.98), they both underestimate the experimental data although the experimental-to-predicted ratio also correlates to N (R 2  = 0.84) going up from 1 to around 2 as N increases from 0.1 to 0.5. This suggests that when using the T-bar for viscosity measurements, the user needs to take into account the flow index to which end a simple estimate of the effective shear rate is suggested also being a function of N .</description><subject>Angular velocity</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Computational fluid dynamics</subject><subject>Fluid flow</subject><subject>Food Science</subject><subject>Materials Science</subject><subject>Mechanical Engineering</subject><subject>Original Contribution</subject><subject>Polymer Sciences</subject><subject>Rheological properties</subject><subject>Sample disturbance</subject><subject>Shear rate</subject><subject>Soft and Granular Matter</subject><subject>Toothpaste</subject><subject>Viscosity measurement</subject><subject>Yield strength</subject><subject>Yield stress</subject><issn>0035-4511</issn><issn>1435-1528</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJmvTjKItfsCDIeg5pknazdJtu0qrrr7drFW-eBmae9x14ELqkcE0BspsIkBQZAUYJUJYzwo_QjPJEECpYfoxm410QLig9RWcxbgBolmZshnYva-sbXzutGqzXKijd2-A-Ve98i32Fq8a_Y9dq2_1u-rX78H3wndN472xjcOyDjXFEB2ciHqJra_ymWotVa_CKlCrg2vqt7YOz8RydVKqJ9uJnztHr_d1q8UiWzw9Pi9sl0YwXPalACwFQmRzSEgBKSE1ZpKJK8yTlec5ZmRaJ0tqCMUJozQ0tsyorspErM57M0dXU2wW_G2zs5cYPoR1fSiZEkfAUaD5SbKJ08DEGW8kuuK0Ke0lBHtTKSa0c1cpvtfJQnUyhOMJtbcNf9T-pLyrIfeI</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Teoman, Baran</creator><creator>Marron, Greggory</creator><creator>Potanin, Andrei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210901</creationdate><title>Rheological characterization of flow inception of thixotropic yield stress fluids using vane and T-bar geometries</title><author>Teoman, Baran ; Marron, Greggory ; Potanin, Andrei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c249t-f0c5500fd806b000b06db965f683648842b693acce0dd55cc4d1b7f7976dbb743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angular velocity</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Computational fluid dynamics</topic><topic>Fluid flow</topic><topic>Food Science</topic><topic>Materials Science</topic><topic>Mechanical Engineering</topic><topic>Original Contribution</topic><topic>Polymer Sciences</topic><topic>Rheological properties</topic><topic>Sample disturbance</topic><topic>Shear rate</topic><topic>Soft and Granular Matter</topic><topic>Toothpaste</topic><topic>Viscosity measurement</topic><topic>Yield strength</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Teoman, Baran</creatorcontrib><creatorcontrib>Marron, Greggory</creatorcontrib><creatorcontrib>Potanin, Andrei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Rheologica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teoman, Baran</au><au>Marron, Greggory</au><au>Potanin, Andrei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheological characterization of flow inception of thixotropic yield stress fluids using vane and T-bar geometries</atitle><jtitle>Rheologica acta</jtitle><stitle>Rheol Acta</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>60</volume><issue>9</issue><spage>531</spage><epage>542</epage><pages>531-542</pages><issn>0035-4511</issn><eissn>1435-1528</eissn><abstract>In this work, two geometries are studied, the vane and the T-bar, which are best suited for assessing the start-up flow of thixotropic yield stress fluids because they minimize the sample disturbance. Based on step-shear measurements with the vane geometry at different angular velocities and on a wide range of products, mostly commercial toothpastes, we calculate the torque on the T-bar using computational fluid dynamics (CFD). The results are compared to the previously suggested approximate theory by Anderson and Meeten (AMT) and extensive original experiments. It turns out that the agreement between CFD, AMT, and the experimental data depends primarily on the shape of the flow curve which may be quantified by the fluid flow index, N , defined in the shear rate range which represents the flow around the rotating rod of the T-bar. While the CFD and AMT predictions agree well with each other (R 2  = 0.98), they both underestimate the experimental data although the experimental-to-predicted ratio also correlates to N (R 2  = 0.84) going up from 1 to around 2 as N increases from 0.1 to 0.5. This suggests that when using the T-bar for viscosity measurements, the user needs to take into account the flow index to which end a simple estimate of the effective shear rate is suggested also being a function of N .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00397-021-01282-4</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0035-4511
ispartof Rheologica acta, 2021-09, Vol.60 (9), p.531-542
issn 0035-4511
1435-1528
language eng
recordid cdi_proquest_journals_2559346018
source SpringerNature Journals
subjects Angular velocity
Characterization and Evaluation of Materials
Chemistry and Materials Science
Complex Fluids and Microfluidics
Computational fluid dynamics
Fluid flow
Food Science
Materials Science
Mechanical Engineering
Original Contribution
Polymer Sciences
Rheological properties
Sample disturbance
Shear rate
Soft and Granular Matter
Toothpaste
Viscosity measurement
Yield strength
Yield stress
title Rheological characterization of flow inception of thixotropic yield stress fluids using vane and T-bar geometries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A16%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheological%20characterization%20of%20flow%20inception%20of%20thixotropic%20yield%20stress%20fluids%20using%20vane%20and%20T-bar%20geometries&rft.jtitle=Rheologica%20acta&rft.au=Teoman,%20Baran&rft.date=2021-09-01&rft.volume=60&rft.issue=9&rft.spage=531&rft.epage=542&rft.pages=531-542&rft.issn=0035-4511&rft.eissn=1435-1528&rft_id=info:doi/10.1007/s00397-021-01282-4&rft_dat=%3Cproquest_cross%3E2559346018%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559346018&rft_id=info:pmid/&rfr_iscdi=true