Squared eigenfunction symmetry of the DΔmKP hierarchy and its constraint

In this paper, squared eigenfunction symmetry of the differential‐difference modified Kadomtsev–Petviashvili (DΔmKP) hierarchy and its constraint are considered. Under the constraint, the Lax triplets of the DΔmKP hierarchy, together with their adjoint forms, give rise to the positive relativistic T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studies in applied mathematics (Cambridge) 2021-08, Vol.147 (2), p.752-791
Hauptverfasser: Chen, Kui, Zhang, Cheng, Zhang, Da‐jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 791
container_issue 2
container_start_page 752
container_title Studies in applied mathematics (Cambridge)
container_volume 147
creator Chen, Kui
Zhang, Cheng
Zhang, Da‐jun
description In this paper, squared eigenfunction symmetry of the differential‐difference modified Kadomtsev–Petviashvili (DΔmKP) hierarchy and its constraint are considered. Under the constraint, the Lax triplets of the DΔmKP hierarchy, together with their adjoint forms, give rise to the positive relativistic Toda (R‐Toda) hierarchy. An invertible transformation is given to connect the positive and negative R‐Toda hierarchies. The positive R‐Toda hierarchy is reduced to the differential‐difference Burgers hierarchy. We also consider another DΔmKP hierarchy and show that its squared eigenfunction symmetry constraint gives rise to the Volterra hierarchy. In addition, we revisit the Ragnisco–Tu hierarchy which is a squared eigenfunction symmetry constraint of the differential‐difference Kadomtsev–Petviashvili (DΔKP) system. It was thought the Ragnisco–Tu hierarchy did not exist one‐field reduction, but here we find a one‐field reduction to reduce the hierarchy to the Volterra hierarchy. Besides, the differential‐difference Burgers hierarchy is also investigated in the Appendix. A multidimensionally consistent three‐point discrete Burgers equation is given.
doi_str_mv 10.1111/sapm.12399
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_2559306254</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559306254</sourcerecordid><originalsourceid>FETCH-LOGICAL-p2259-3e2b595cbec489489fbbcc60b1167620ba80711746dd221114d8bb13edc1c2ac3</originalsourceid><addsrcrecordid>eNotkE1OwzAQhS0EEqWw4QSWWKfYkzipl1X5qyiiUmFt2Y5DXTVOajtCuQfn4kykLU8jvbd4mtF8CN1SMqGD7oNs6wmFlPMzNKJZXiSccXKORoQAJMAgv0RXIWwJIbRgZIQW630nvSmxsV_GVZ3T0TYOh76uTfQ9biocNwY__P7Uryu8scZLrzc9lq7ENgasGxeil9bFa3RRyV0wN_8-Rp9Pjx_zl2T5_ryYz5ZJC8B4khpQjDOtjM6mfJhKKa1zoijNixyIklNSUFpkeVkCDD9l5VQpmppSUw1Sp2N0d9rb-mbfmRDFtum8G04KYIynJAeWDS16an3bnelF620tfS8oEQdO4sBJHDmJ9Wz1dkzpH7FtXjk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559306254</pqid></control><display><type>article</type><title>Squared eigenfunction symmetry of the DΔmKP hierarchy and its constraint</title><source>Wiley Online Library</source><source>EBSCO Business Source Complete</source><creator>Chen, Kui ; Zhang, Cheng ; Zhang, Da‐jun</creator><creatorcontrib>Chen, Kui ; Zhang, Cheng ; Zhang, Da‐jun</creatorcontrib><description>In this paper, squared eigenfunction symmetry of the differential‐difference modified Kadomtsev–Petviashvili (DΔmKP) hierarchy and its constraint are considered. Under the constraint, the Lax triplets of the DΔmKP hierarchy, together with their adjoint forms, give rise to the positive relativistic Toda (R‐Toda) hierarchy. An invertible transformation is given to connect the positive and negative R‐Toda hierarchies. The positive R‐Toda hierarchy is reduced to the differential‐difference Burgers hierarchy. We also consider another DΔmKP hierarchy and show that its squared eigenfunction symmetry constraint gives rise to the Volterra hierarchy. In addition, we revisit the Ragnisco–Tu hierarchy which is a squared eigenfunction symmetry constraint of the differential‐difference Kadomtsev–Petviashvili (DΔKP) system. It was thought the Ragnisco–Tu hierarchy did not exist one‐field reduction, but here we find a one‐field reduction to reduce the hierarchy to the Volterra hierarchy. Besides, the differential‐difference Burgers hierarchy is also investigated in the Appendix. A multidimensionally consistent three‐point discrete Burgers equation is given.</description><identifier>ISSN: 0022-2526</identifier><identifier>EISSN: 1467-9590</identifier><identifier>DOI: 10.1111/sapm.12399</identifier><language>eng</language><publisher>Cambridge: Blackwell Publishing Ltd</publisher><subject>Burgers ; Burgers equation ; DΔmKP ; Eigenvectors ; Hierarchies ; one‐field reduction ; Reduction ; relativistic Toda ; squared eigenfunction symmetry constraint ; Symmetry</subject><ispartof>Studies in applied mathematics (Cambridge), 2021-08, Vol.147 (2), p.752-791</ispartof><rights>2021 Wiley Periodicals LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-3691-4165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fsapm.12399$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fsapm.12399$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Chen, Kui</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Zhang, Da‐jun</creatorcontrib><title>Squared eigenfunction symmetry of the DΔmKP hierarchy and its constraint</title><title>Studies in applied mathematics (Cambridge)</title><description>In this paper, squared eigenfunction symmetry of the differential‐difference modified Kadomtsev–Petviashvili (DΔmKP) hierarchy and its constraint are considered. Under the constraint, the Lax triplets of the DΔmKP hierarchy, together with their adjoint forms, give rise to the positive relativistic Toda (R‐Toda) hierarchy. An invertible transformation is given to connect the positive and negative R‐Toda hierarchies. The positive R‐Toda hierarchy is reduced to the differential‐difference Burgers hierarchy. We also consider another DΔmKP hierarchy and show that its squared eigenfunction symmetry constraint gives rise to the Volterra hierarchy. In addition, we revisit the Ragnisco–Tu hierarchy which is a squared eigenfunction symmetry constraint of the differential‐difference Kadomtsev–Petviashvili (DΔKP) system. It was thought the Ragnisco–Tu hierarchy did not exist one‐field reduction, but here we find a one‐field reduction to reduce the hierarchy to the Volterra hierarchy. Besides, the differential‐difference Burgers hierarchy is also investigated in the Appendix. A multidimensionally consistent three‐point discrete Burgers equation is given.</description><subject>Burgers</subject><subject>Burgers equation</subject><subject>DΔmKP</subject><subject>Eigenvectors</subject><subject>Hierarchies</subject><subject>one‐field reduction</subject><subject>Reduction</subject><subject>relativistic Toda</subject><subject>squared eigenfunction symmetry constraint</subject><subject>Symmetry</subject><issn>0022-2526</issn><issn>1467-9590</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkE1OwzAQhS0EEqWw4QSWWKfYkzipl1X5qyiiUmFt2Y5DXTVOajtCuQfn4kykLU8jvbd4mtF8CN1SMqGD7oNs6wmFlPMzNKJZXiSccXKORoQAJMAgv0RXIWwJIbRgZIQW630nvSmxsV_GVZ3T0TYOh76uTfQ9biocNwY__P7Uryu8scZLrzc9lq7ENgasGxeil9bFa3RRyV0wN_8-Rp9Pjx_zl2T5_ryYz5ZJC8B4khpQjDOtjM6mfJhKKa1zoijNixyIklNSUFpkeVkCDD9l5VQpmppSUw1Sp2N0d9rb-mbfmRDFtum8G04KYIynJAeWDS16an3bnelF620tfS8oEQdO4sBJHDmJ9Wz1dkzpH7FtXjk</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Chen, Kui</creator><creator>Zhang, Cheng</creator><creator>Zhang, Da‐jun</creator><general>Blackwell Publishing Ltd</general><scope>JQ2</scope><orcidid>https://orcid.org/0000-0003-3691-4165</orcidid></search><sort><creationdate>202108</creationdate><title>Squared eigenfunction symmetry of the DΔmKP hierarchy and its constraint</title><author>Chen, Kui ; Zhang, Cheng ; Zhang, Da‐jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p2259-3e2b595cbec489489fbbcc60b1167620ba80711746dd221114d8bb13edc1c2ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Burgers</topic><topic>Burgers equation</topic><topic>DΔmKP</topic><topic>Eigenvectors</topic><topic>Hierarchies</topic><topic>one‐field reduction</topic><topic>Reduction</topic><topic>relativistic Toda</topic><topic>squared eigenfunction symmetry constraint</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Kui</creatorcontrib><creatorcontrib>Zhang, Cheng</creatorcontrib><creatorcontrib>Zhang, Da‐jun</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Studies in applied mathematics (Cambridge)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Kui</au><au>Zhang, Cheng</au><au>Zhang, Da‐jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Squared eigenfunction symmetry of the DΔmKP hierarchy and its constraint</atitle><jtitle>Studies in applied mathematics (Cambridge)</jtitle><date>2021-08</date><risdate>2021</risdate><volume>147</volume><issue>2</issue><spage>752</spage><epage>791</epage><pages>752-791</pages><issn>0022-2526</issn><eissn>1467-9590</eissn><abstract>In this paper, squared eigenfunction symmetry of the differential‐difference modified Kadomtsev–Petviashvili (DΔmKP) hierarchy and its constraint are considered. Under the constraint, the Lax triplets of the DΔmKP hierarchy, together with their adjoint forms, give rise to the positive relativistic Toda (R‐Toda) hierarchy. An invertible transformation is given to connect the positive and negative R‐Toda hierarchies. The positive R‐Toda hierarchy is reduced to the differential‐difference Burgers hierarchy. We also consider another DΔmKP hierarchy and show that its squared eigenfunction symmetry constraint gives rise to the Volterra hierarchy. In addition, we revisit the Ragnisco–Tu hierarchy which is a squared eigenfunction symmetry constraint of the differential‐difference Kadomtsev–Petviashvili (DΔKP) system. It was thought the Ragnisco–Tu hierarchy did not exist one‐field reduction, but here we find a one‐field reduction to reduce the hierarchy to the Volterra hierarchy. Besides, the differential‐difference Burgers hierarchy is also investigated in the Appendix. A multidimensionally consistent three‐point discrete Burgers equation is given.</abstract><cop>Cambridge</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/sapm.12399</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0003-3691-4165</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2526
ispartof Studies in applied mathematics (Cambridge), 2021-08, Vol.147 (2), p.752-791
issn 0022-2526
1467-9590
language eng
recordid cdi_proquest_journals_2559306254
source Wiley Online Library; EBSCO Business Source Complete
subjects Burgers
Burgers equation
DΔmKP
Eigenvectors
Hierarchies
one‐field reduction
Reduction
relativistic Toda
squared eigenfunction symmetry constraint
Symmetry
title Squared eigenfunction symmetry of the DΔmKP hierarchy and its constraint
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A44%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Squared%20eigenfunction%20symmetry%20of%20the%20D%CE%94mKP%20hierarchy%20and%20its%20constraint&rft.jtitle=Studies%20in%20applied%20mathematics%20(Cambridge)&rft.au=Chen,%20Kui&rft.date=2021-08&rft.volume=147&rft.issue=2&rft.spage=752&rft.epage=791&rft.pages=752-791&rft.issn=0022-2526&rft.eissn=1467-9590&rft_id=info:doi/10.1111/sapm.12399&rft_dat=%3Cproquest_wiley%3E2559306254%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559306254&rft_id=info:pmid/&rfr_iscdi=true