A fast denoising fusion network using internal and external priors
As a preprocessing module, denoising can affect the overall image processing; thus, image denoising algorithms are of high significance for image processing and have been studied for several decades. Theoretically, the performances of existing algorithms can be significantly improved, but these impr...
Gespeichert in:
Veröffentlicht in: | Signal, image and video processing image and video processing, 2021, Vol.15 (6), p.1275-1283 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1283 |
---|---|
container_issue | 6 |
container_start_page | 1275 |
container_title | Signal, image and video processing |
container_volume | 15 |
creator | Luo, Jingyu Xu, Shaoping Li, Chongxi |
description | As a preprocessing module, denoising can affect the overall image processing; thus, image denoising algorithms are of high significance for image processing and have been studied for several decades. Theoretically, the performances of existing algorithms can be significantly improved, but these improvements are indeed slowing down. To significantly improve the denoising performance, we propose a denoising network method called the fast denoising fusion network (FDFNet). It combines the advantages of a neural network based on block matching and 3D filtering (BM3D-Net) and a fast and flexible denoising convolutional neural network (FFDNet), which simultaneously utilizes internal and external priors to remove noise in a given image; thus, it is a fast and efficient denoising method that delivers superior performance. BM3D-Net and FFDNet can generate two images as basic estimates for fusion. We adopt a combination model to receive the two estimates, which can fuse them effectively to obtain a latent image. Through testing on standard datasets, our experimental results reveal that FDFNet outperformed state-of-the-art denoising methods in terms of both subjective and objective quality. By implementing the entire method on a CNN, the proposed method could exploit the GPU to achieve a higher efficiency. Because the proposed method combines internal and external priors effectively, it could utilize complementary prior knowledge to derive more information. |
doi_str_mv | 10.1007/s11760-021-01858-w |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559122377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559122377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f6cfc419aacbad07504c25e0673d5582aa4aa362122846df4026a0292e01a7323</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7CKxDowY8d2siwVL6kSG1hbQ-JUKcUudqLC3-M2FeyYzTx0z9XoMnaJcI0A-iYiagU5cMwBS1nmuxM2wVKJHDXi6e8M4pzNYlxDKsF1qcoJu51nLcU-a6zzXezcKmuH2HmXOdvvfHjPhsOxc70NjjYZuSazX8dlGzof4gU7a2kT7ezYp-z1_u5l8Zgvnx-eFvNlXgus-rxVdVsXWBHVb9SAllDUXFpQWjRSlpyoIBKKI-dloZq2AK4IeMUtIGnBxZRdjb7b4D8HG3uz9sP-j2i4lFXihNZJxUdVHXyMwbYmfflB4dsgmH1cZozLpLjMIS6zS5AYoZjEbmXDn_U_1A8re2ze</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559122377</pqid></control><display><type>article</type><title>A fast denoising fusion network using internal and external priors</title><source>Springer Nature - Complete Springer Journals</source><creator>Luo, Jingyu ; Xu, Shaoping ; Li, Chongxi</creator><creatorcontrib>Luo, Jingyu ; Xu, Shaoping ; Li, Chongxi</creatorcontrib><description>As a preprocessing module, denoising can affect the overall image processing; thus, image denoising algorithms are of high significance for image processing and have been studied for several decades. Theoretically, the performances of existing algorithms can be significantly improved, but these improvements are indeed slowing down. To significantly improve the denoising performance, we propose a denoising network method called the fast denoising fusion network (FDFNet). It combines the advantages of a neural network based on block matching and 3D filtering (BM3D-Net) and a fast and flexible denoising convolutional neural network (FFDNet), which simultaneously utilizes internal and external priors to remove noise in a given image; thus, it is a fast and efficient denoising method that delivers superior performance. BM3D-Net and FFDNet can generate two images as basic estimates for fusion. We adopt a combination model to receive the two estimates, which can fuse them effectively to obtain a latent image. Through testing on standard datasets, our experimental results reveal that FDFNet outperformed state-of-the-art denoising methods in terms of both subjective and objective quality. By implementing the entire method on a CNN, the proposed method could exploit the GPU to achieve a higher efficiency. Because the proposed method combines internal and external priors effectively, it could utilize complementary prior knowledge to derive more information.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-021-01858-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial neural networks ; Computer Imaging ; Computer Science ; Estimates ; Image processing ; Image Processing and Computer Vision ; Multimedia Information Systems ; Neural networks ; Noise reduction ; Original Paper ; Pattern Recognition and Graphics ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2021, Vol.15 (6), p.1275-1283</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f6cfc419aacbad07504c25e0673d5582aa4aa362122846df4026a0292e01a7323</citedby><cites>FETCH-LOGICAL-c319t-f6cfc419aacbad07504c25e0673d5582aa4aa362122846df4026a0292e01a7323</cites><orcidid>0000-0003-0628-334X ; 0000-0001-6853-3071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-021-01858-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-021-01858-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Luo, Jingyu</creatorcontrib><creatorcontrib>Xu, Shaoping</creatorcontrib><creatorcontrib>Li, Chongxi</creatorcontrib><title>A fast denoising fusion network using internal and external priors</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>As a preprocessing module, denoising can affect the overall image processing; thus, image denoising algorithms are of high significance for image processing and have been studied for several decades. Theoretically, the performances of existing algorithms can be significantly improved, but these improvements are indeed slowing down. To significantly improve the denoising performance, we propose a denoising network method called the fast denoising fusion network (FDFNet). It combines the advantages of a neural network based on block matching and 3D filtering (BM3D-Net) and a fast and flexible denoising convolutional neural network (FFDNet), which simultaneously utilizes internal and external priors to remove noise in a given image; thus, it is a fast and efficient denoising method that delivers superior performance. BM3D-Net and FFDNet can generate two images as basic estimates for fusion. We adopt a combination model to receive the two estimates, which can fuse them effectively to obtain a latent image. Through testing on standard datasets, our experimental results reveal that FDFNet outperformed state-of-the-art denoising methods in terms of both subjective and objective quality. By implementing the entire method on a CNN, the proposed method could exploit the GPU to achieve a higher efficiency. Because the proposed method combines internal and external priors effectively, it could utilize complementary prior knowledge to derive more information.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Estimates</subject><subject>Image processing</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpD7CKxDowY8d2siwVL6kSG1hbQ-JUKcUudqLC3-M2FeyYzTx0z9XoMnaJcI0A-iYiagU5cMwBS1nmuxM2wVKJHDXi6e8M4pzNYlxDKsF1qcoJu51nLcU-a6zzXezcKmuH2HmXOdvvfHjPhsOxc70NjjYZuSazX8dlGzof4gU7a2kT7ezYp-z1_u5l8Zgvnx-eFvNlXgus-rxVdVsXWBHVb9SAllDUXFpQWjRSlpyoIBKKI-dloZq2AK4IeMUtIGnBxZRdjb7b4D8HG3uz9sP-j2i4lFXihNZJxUdVHXyMwbYmfflB4dsgmH1cZozLpLjMIS6zS5AYoZjEbmXDn_U_1A8re2ze</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Luo, Jingyu</creator><creator>Xu, Shaoping</creator><creator>Li, Chongxi</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0628-334X</orcidid><orcidid>https://orcid.org/0000-0001-6853-3071</orcidid></search><sort><creationdate>2021</creationdate><title>A fast denoising fusion network using internal and external priors</title><author>Luo, Jingyu ; Xu, Shaoping ; Li, Chongxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f6cfc419aacbad07504c25e0673d5582aa4aa362122846df4026a0292e01a7323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Estimates</topic><topic>Image processing</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jingyu</creatorcontrib><creatorcontrib>Xu, Shaoping</creatorcontrib><creatorcontrib>Li, Chongxi</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Jingyu</au><au>Xu, Shaoping</au><au>Li, Chongxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast denoising fusion network using internal and external priors</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2021</date><risdate>2021</risdate><volume>15</volume><issue>6</issue><spage>1275</spage><epage>1283</epage><pages>1275-1283</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>As a preprocessing module, denoising can affect the overall image processing; thus, image denoising algorithms are of high significance for image processing and have been studied for several decades. Theoretically, the performances of existing algorithms can be significantly improved, but these improvements are indeed slowing down. To significantly improve the denoising performance, we propose a denoising network method called the fast denoising fusion network (FDFNet). It combines the advantages of a neural network based on block matching and 3D filtering (BM3D-Net) and a fast and flexible denoising convolutional neural network (FFDNet), which simultaneously utilizes internal and external priors to remove noise in a given image; thus, it is a fast and efficient denoising method that delivers superior performance. BM3D-Net and FFDNet can generate two images as basic estimates for fusion. We adopt a combination model to receive the two estimates, which can fuse them effectively to obtain a latent image. Through testing on standard datasets, our experimental results reveal that FDFNet outperformed state-of-the-art denoising methods in terms of both subjective and objective quality. By implementing the entire method on a CNN, the proposed method could exploit the GPU to achieve a higher efficiency. Because the proposed method combines internal and external priors effectively, it could utilize complementary prior knowledge to derive more information.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-021-01858-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0628-334X</orcidid><orcidid>https://orcid.org/0000-0001-6853-3071</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1863-1703 |
ispartof | Signal, image and video processing, 2021, Vol.15 (6), p.1275-1283 |
issn | 1863-1703 1863-1711 |
language | eng |
recordid | cdi_proquest_journals_2559122377 |
source | Springer Nature - Complete Springer Journals |
subjects | Algorithms Artificial neural networks Computer Imaging Computer Science Estimates Image processing Image Processing and Computer Vision Multimedia Information Systems Neural networks Noise reduction Original Paper Pattern Recognition and Graphics Signal,Image and Speech Processing Vision |
title | A fast denoising fusion network using internal and external priors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20denoising%20fusion%20network%20using%20internal%20and%20external%20priors&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Luo,%20Jingyu&rft.date=2021&rft.volume=15&rft.issue=6&rft.spage=1275&rft.epage=1283&rft.pages=1275-1283&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-021-01858-w&rft_dat=%3Cproquest_cross%3E2559122377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559122377&rft_id=info:pmid/&rfr_iscdi=true |