A fast denoising fusion network using internal and external priors

As a preprocessing module, denoising can affect the overall image processing; thus, image denoising algorithms are of high significance for image processing and have been studied for several decades. Theoretically, the performances of existing algorithms can be significantly improved, but these impr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2021, Vol.15 (6), p.1275-1283
Hauptverfasser: Luo, Jingyu, Xu, Shaoping, Li, Chongxi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1283
container_issue 6
container_start_page 1275
container_title Signal, image and video processing
container_volume 15
creator Luo, Jingyu
Xu, Shaoping
Li, Chongxi
description As a preprocessing module, denoising can affect the overall image processing; thus, image denoising algorithms are of high significance for image processing and have been studied for several decades. Theoretically, the performances of existing algorithms can be significantly improved, but these improvements are indeed slowing down. To significantly improve the denoising performance, we propose a denoising network method called the fast denoising fusion network (FDFNet). It combines the advantages of a neural network based on block matching and 3D filtering (BM3D-Net) and a fast and flexible denoising convolutional neural network (FFDNet), which simultaneously utilizes internal and external priors to remove noise in a given image; thus, it is a fast and efficient denoising method that delivers superior performance. BM3D-Net and FFDNet can generate two images as basic estimates for fusion. We adopt a combination model to receive the two estimates, which can fuse them effectively to obtain a latent image. Through testing on standard datasets, our experimental results reveal that FDFNet outperformed state-of-the-art denoising methods in terms of both subjective and objective quality. By implementing the entire method on a CNN, the proposed method could exploit the GPU to achieve a higher efficiency. Because the proposed method combines internal and external priors effectively, it could utilize complementary prior knowledge to derive more information.
doi_str_mv 10.1007/s11760-021-01858-w
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2559122377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2559122377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f6cfc419aacbad07504c25e0673d5582aa4aa362122846df4026a0292e01a7323</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EElXpD7CKxDowY8d2siwVL6kSG1hbQ-JUKcUudqLC3-M2FeyYzTx0z9XoMnaJcI0A-iYiagU5cMwBS1nmuxM2wVKJHDXi6e8M4pzNYlxDKsF1qcoJu51nLcU-a6zzXezcKmuH2HmXOdvvfHjPhsOxc70NjjYZuSazX8dlGzof4gU7a2kT7ezYp-z1_u5l8Zgvnx-eFvNlXgus-rxVdVsXWBHVb9SAllDUXFpQWjRSlpyoIBKKI-dloZq2AK4IeMUtIGnBxZRdjb7b4D8HG3uz9sP-j2i4lFXihNZJxUdVHXyMwbYmfflB4dsgmH1cZozLpLjMIS6zS5AYoZjEbmXDn_U_1A8re2ze</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2559122377</pqid></control><display><type>article</type><title>A fast denoising fusion network using internal and external priors</title><source>Springer Nature - Complete Springer Journals</source><creator>Luo, Jingyu ; Xu, Shaoping ; Li, Chongxi</creator><creatorcontrib>Luo, Jingyu ; Xu, Shaoping ; Li, Chongxi</creatorcontrib><description>As a preprocessing module, denoising can affect the overall image processing; thus, image denoising algorithms are of high significance for image processing and have been studied for several decades. Theoretically, the performances of existing algorithms can be significantly improved, but these improvements are indeed slowing down. To significantly improve the denoising performance, we propose a denoising network method called the fast denoising fusion network (FDFNet). It combines the advantages of a neural network based on block matching and 3D filtering (BM3D-Net) and a fast and flexible denoising convolutional neural network (FFDNet), which simultaneously utilizes internal and external priors to remove noise in a given image; thus, it is a fast and efficient denoising method that delivers superior performance. BM3D-Net and FFDNet can generate two images as basic estimates for fusion. We adopt a combination model to receive the two estimates, which can fuse them effectively to obtain a latent image. Through testing on standard datasets, our experimental results reveal that FDFNet outperformed state-of-the-art denoising methods in terms of both subjective and objective quality. By implementing the entire method on a CNN, the proposed method could exploit the GPU to achieve a higher efficiency. Because the proposed method combines internal and external priors effectively, it could utilize complementary prior knowledge to derive more information.</description><identifier>ISSN: 1863-1703</identifier><identifier>EISSN: 1863-1711</identifier><identifier>DOI: 10.1007/s11760-021-01858-w</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Artificial neural networks ; Computer Imaging ; Computer Science ; Estimates ; Image processing ; Image Processing and Computer Vision ; Multimedia Information Systems ; Neural networks ; Noise reduction ; Original Paper ; Pattern Recognition and Graphics ; Signal,Image and Speech Processing ; Vision</subject><ispartof>Signal, image and video processing, 2021, Vol.15 (6), p.1275-1283</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f6cfc419aacbad07504c25e0673d5582aa4aa362122846df4026a0292e01a7323</citedby><cites>FETCH-LOGICAL-c319t-f6cfc419aacbad07504c25e0673d5582aa4aa362122846df4026a0292e01a7323</cites><orcidid>0000-0003-0628-334X ; 0000-0001-6853-3071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11760-021-01858-w$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11760-021-01858-w$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Luo, Jingyu</creatorcontrib><creatorcontrib>Xu, Shaoping</creatorcontrib><creatorcontrib>Li, Chongxi</creatorcontrib><title>A fast denoising fusion network using internal and external priors</title><title>Signal, image and video processing</title><addtitle>SIViP</addtitle><description>As a preprocessing module, denoising can affect the overall image processing; thus, image denoising algorithms are of high significance for image processing and have been studied for several decades. Theoretically, the performances of existing algorithms can be significantly improved, but these improvements are indeed slowing down. To significantly improve the denoising performance, we propose a denoising network method called the fast denoising fusion network (FDFNet). It combines the advantages of a neural network based on block matching and 3D filtering (BM3D-Net) and a fast and flexible denoising convolutional neural network (FFDNet), which simultaneously utilizes internal and external priors to remove noise in a given image; thus, it is a fast and efficient denoising method that delivers superior performance. BM3D-Net and FFDNet can generate two images as basic estimates for fusion. We adopt a combination model to receive the two estimates, which can fuse them effectively to obtain a latent image. Through testing on standard datasets, our experimental results reveal that FDFNet outperformed state-of-the-art denoising methods in terms of both subjective and objective quality. By implementing the entire method on a CNN, the proposed method could exploit the GPU to achieve a higher efficiency. Because the proposed method combines internal and external priors effectively, it could utilize complementary prior knowledge to derive more information.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Estimates</subject><subject>Image processing</subject><subject>Image Processing and Computer Vision</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Noise reduction</subject><subject>Original Paper</subject><subject>Pattern Recognition and Graphics</subject><subject>Signal,Image and Speech Processing</subject><subject>Vision</subject><issn>1863-1703</issn><issn>1863-1711</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EElXpD7CKxDowY8d2siwVL6kSG1hbQ-JUKcUudqLC3-M2FeyYzTx0z9XoMnaJcI0A-iYiagU5cMwBS1nmuxM2wVKJHDXi6e8M4pzNYlxDKsF1qcoJu51nLcU-a6zzXezcKmuH2HmXOdvvfHjPhsOxc70NjjYZuSazX8dlGzof4gU7a2kT7ezYp-z1_u5l8Zgvnx-eFvNlXgus-rxVdVsXWBHVb9SAllDUXFpQWjRSlpyoIBKKI-dloZq2AK4IeMUtIGnBxZRdjb7b4D8HG3uz9sP-j2i4lFXihNZJxUdVHXyMwbYmfflB4dsgmH1cZozLpLjMIS6zS5AYoZjEbmXDn_U_1A8re2ze</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Luo, Jingyu</creator><creator>Xu, Shaoping</creator><creator>Li, Chongxi</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0628-334X</orcidid><orcidid>https://orcid.org/0000-0001-6853-3071</orcidid></search><sort><creationdate>2021</creationdate><title>A fast denoising fusion network using internal and external priors</title><author>Luo, Jingyu ; Xu, Shaoping ; Li, Chongxi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f6cfc419aacbad07504c25e0673d5582aa4aa362122846df4026a0292e01a7323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Estimates</topic><topic>Image processing</topic><topic>Image Processing and Computer Vision</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Noise reduction</topic><topic>Original Paper</topic><topic>Pattern Recognition and Graphics</topic><topic>Signal,Image and Speech Processing</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jingyu</creatorcontrib><creatorcontrib>Xu, Shaoping</creatorcontrib><creatorcontrib>Li, Chongxi</creatorcontrib><collection>CrossRef</collection><jtitle>Signal, image and video processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Jingyu</au><au>Xu, Shaoping</au><au>Li, Chongxi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A fast denoising fusion network using internal and external priors</atitle><jtitle>Signal, image and video processing</jtitle><stitle>SIViP</stitle><date>2021</date><risdate>2021</risdate><volume>15</volume><issue>6</issue><spage>1275</spage><epage>1283</epage><pages>1275-1283</pages><issn>1863-1703</issn><eissn>1863-1711</eissn><abstract>As a preprocessing module, denoising can affect the overall image processing; thus, image denoising algorithms are of high significance for image processing and have been studied for several decades. Theoretically, the performances of existing algorithms can be significantly improved, but these improvements are indeed slowing down. To significantly improve the denoising performance, we propose a denoising network method called the fast denoising fusion network (FDFNet). It combines the advantages of a neural network based on block matching and 3D filtering (BM3D-Net) and a fast and flexible denoising convolutional neural network (FFDNet), which simultaneously utilizes internal and external priors to remove noise in a given image; thus, it is a fast and efficient denoising method that delivers superior performance. BM3D-Net and FFDNet can generate two images as basic estimates for fusion. We adopt a combination model to receive the two estimates, which can fuse them effectively to obtain a latent image. Through testing on standard datasets, our experimental results reveal that FDFNet outperformed state-of-the-art denoising methods in terms of both subjective and objective quality. By implementing the entire method on a CNN, the proposed method could exploit the GPU to achieve a higher efficiency. Because the proposed method combines internal and external priors effectively, it could utilize complementary prior knowledge to derive more information.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s11760-021-01858-w</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0628-334X</orcidid><orcidid>https://orcid.org/0000-0001-6853-3071</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1863-1703
ispartof Signal, image and video processing, 2021, Vol.15 (6), p.1275-1283
issn 1863-1703
1863-1711
language eng
recordid cdi_proquest_journals_2559122377
source Springer Nature - Complete Springer Journals
subjects Algorithms
Artificial neural networks
Computer Imaging
Computer Science
Estimates
Image processing
Image Processing and Computer Vision
Multimedia Information Systems
Neural networks
Noise reduction
Original Paper
Pattern Recognition and Graphics
Signal,Image and Speech Processing
Vision
title A fast denoising fusion network using internal and external priors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T05%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20fast%20denoising%20fusion%20network%20using%20internal%20and%20external%20priors&rft.jtitle=Signal,%20image%20and%20video%20processing&rft.au=Luo,%20Jingyu&rft.date=2021&rft.volume=15&rft.issue=6&rft.spage=1275&rft.epage=1283&rft.pages=1275-1283&rft.issn=1863-1703&rft.eissn=1863-1711&rft_id=info:doi/10.1007/s11760-021-01858-w&rft_dat=%3Cproquest_cross%3E2559122377%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2559122377&rft_id=info:pmid/&rfr_iscdi=true