Dual Imaging Metamaterial Composed of Periodic Bi-Fold Transformation Media Made of 3-D Printed TiO2 Nanoparticles Mixed Resin
Broadband operation of a dual imaging metamaterial composed of periodic bi-fold transformation media made of 3-D printed TiO 2 nanoparticles mixed resin is demonstrated. Peculiar refractions on the spatially discontinuous boundaries (SDBs) and refractions along with the coordinate transformations in...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2021-08, Vol.69 (8), p.3616-3623 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3623 |
---|---|
container_issue | 8 |
container_start_page | 3616 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 69 |
creator | Takano, Yuma Sanada, Atsushi |
description | Broadband operation of a dual imaging metamaterial composed of periodic bi-fold transformation media made of 3-D printed TiO 2 nanoparticles mixed resin is demonstrated. Peculiar refractions on the spatially discontinuous boundaries (SDBs) and refractions along with the coordinate transformations in the bi-fold transformation media are taken into account and the dual imaging conditions are derived based on the ray-tracing method. The dual imaging metamaterial operating with the incident angles of ±30° is designed and its operation is numerically demonstrated by the ray-tracing method and the equivalent circuit simulations. The bi-fold transformation media are implemented by the TiO 2 mixed resin with the experimentally obtained permittivity of 3.2 with a mass fraction of 0.075. The operation of the fabricated metamaterial is also confirmed by the near-field measurements. The energy transmittances well correspond to those of the simulated results. The bandwidth evaluated by the energy transmittances shows broadband operation as wide as from 30 to 40 GHz. |
doi_str_mv | 10.1109/TMTT.2021.3087711 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2558825381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9459469</ieee_id><sourcerecordid>2558825381</sourcerecordid><originalsourceid>FETCH-LOGICAL-i199t-26eeff8dd8ccb7bf3be2731e1cbcb89b894a37e11a2e7013c9329eedc81f18263</originalsourceid><addsrcrecordid>eNotjV9LwzAUxYMoOKcfQHwJ-NyZm_RP8qib08HqhtTnkra3I6NtZtKBvvjZjUy4cLjn_s65hNwCmwEw9VDkRTHjjMNMMJllAGdkAkmSRSrN2DmZMAYyUrFkl-TK-31Y44TJCflZHHVHV73emWFHcxx1r0d0Jphz2x-sx4balm6DZRtT0ycTLW3X0MLpwbfWBdrYIQQbo2muG_yjRbSgW2eGMYQLs-H0TQ_2oN1o6g49zc1XOLyjN8M1uWh15_HmX6fkY_lczF-j9eZlNX9cRwaUGiOeIratbBpZ11VWtaJCnglAqKu6kipMrEWGAJpjxkDUSnCF2NQSWpA8FVNyf-o9OPt5RD-We3t0Q3hZ8iSRkidCQqDuTpRBxPLgTK_dd6niRMWpEr-gQGpm</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558825381</pqid></control><display><type>article</type><title>Dual Imaging Metamaterial Composed of Periodic Bi-Fold Transformation Media Made of 3-D Printed TiO2 Nanoparticles Mixed Resin</title><source>IEEE Electronic Library (IEL)</source><creator>Takano, Yuma ; Sanada, Atsushi</creator><creatorcontrib>Takano, Yuma ; Sanada, Atsushi</creatorcontrib><description>Broadband operation of a dual imaging metamaterial composed of periodic bi-fold transformation media made of 3-D printed TiO 2 nanoparticles mixed resin is demonstrated. Peculiar refractions on the spatially discontinuous boundaries (SDBs) and refractions along with the coordinate transformations in the bi-fold transformation media are taken into account and the dual imaging conditions are derived based on the ray-tracing method. The dual imaging metamaterial operating with the incident angles of ±30° is designed and its operation is numerically demonstrated by the ray-tracing method and the equivalent circuit simulations. The bi-fold transformation media are implemented by the TiO 2 mixed resin with the experimentally obtained permittivity of 3.2 with a mass fraction of 0.075. The operation of the fabricated metamaterial is also confirmed by the near-field measurements. The energy transmittances well correspond to those of the simulated results. The bandwidth evaluated by the energy transmittances shows broadband operation as wide as from 30 to 40 GHz.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2021.3087711</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>3-D printing technology ; Broadband ; Coordinate transformations ; Dual imaging ; Electromagnetics ; Equivalent circuits ; Imaging ; Media ; Metamaterials ; Nanoparticles ; Printing ; Ray tracing ; Resins ; spatially discontinuous boundary (SDB) ; Three dimensional printing ; Titanium dioxide ; transformation electromagnetics</subject><ispartof>IEEE transactions on microwave theory and techniques, 2021-08, Vol.69 (8), p.3616-3623</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-2642-5296 ; 0000-0002-1338-7895</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9459469$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9459469$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Takano, Yuma</creatorcontrib><creatorcontrib>Sanada, Atsushi</creatorcontrib><title>Dual Imaging Metamaterial Composed of Periodic Bi-Fold Transformation Media Made of 3-D Printed TiO2 Nanoparticles Mixed Resin</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>Broadband operation of a dual imaging metamaterial composed of periodic bi-fold transformation media made of 3-D printed TiO 2 nanoparticles mixed resin is demonstrated. Peculiar refractions on the spatially discontinuous boundaries (SDBs) and refractions along with the coordinate transformations in the bi-fold transformation media are taken into account and the dual imaging conditions are derived based on the ray-tracing method. The dual imaging metamaterial operating with the incident angles of ±30° is designed and its operation is numerically demonstrated by the ray-tracing method and the equivalent circuit simulations. The bi-fold transformation media are implemented by the TiO 2 mixed resin with the experimentally obtained permittivity of 3.2 with a mass fraction of 0.075. The operation of the fabricated metamaterial is also confirmed by the near-field measurements. The energy transmittances well correspond to those of the simulated results. The bandwidth evaluated by the energy transmittances shows broadband operation as wide as from 30 to 40 GHz.</description><subject>3-D printing technology</subject><subject>Broadband</subject><subject>Coordinate transformations</subject><subject>Dual imaging</subject><subject>Electromagnetics</subject><subject>Equivalent circuits</subject><subject>Imaging</subject><subject>Media</subject><subject>Metamaterials</subject><subject>Nanoparticles</subject><subject>Printing</subject><subject>Ray tracing</subject><subject>Resins</subject><subject>spatially discontinuous boundary (SDB)</subject><subject>Three dimensional printing</subject><subject>Titanium dioxide</subject><subject>transformation electromagnetics</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNotjV9LwzAUxYMoOKcfQHwJ-NyZm_RP8qib08HqhtTnkra3I6NtZtKBvvjZjUy4cLjn_s65hNwCmwEw9VDkRTHjjMNMMJllAGdkAkmSRSrN2DmZMAYyUrFkl-TK-31Y44TJCflZHHVHV73emWFHcxx1r0d0Jphz2x-sx4balm6DZRtT0ycTLW3X0MLpwbfWBdrYIQQbo2muG_yjRbSgW2eGMYQLs-H0TQ_2oN1o6g49zc1XOLyjN8M1uWh15_HmX6fkY_lczF-j9eZlNX9cRwaUGiOeIratbBpZ11VWtaJCnglAqKu6kipMrEWGAJpjxkDUSnCF2NQSWpA8FVNyf-o9OPt5RD-We3t0Q3hZ8iSRkidCQqDuTpRBxPLgTK_dd6niRMWpEr-gQGpm</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Takano, Yuma</creator><creator>Sanada, Atsushi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2642-5296</orcidid><orcidid>https://orcid.org/0000-0002-1338-7895</orcidid></search><sort><creationdate>20210801</creationdate><title>Dual Imaging Metamaterial Composed of Periodic Bi-Fold Transformation Media Made of 3-D Printed TiO2 Nanoparticles Mixed Resin</title><author>Takano, Yuma ; Sanada, Atsushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i199t-26eeff8dd8ccb7bf3be2731e1cbcb89b894a37e11a2e7013c9329eedc81f18263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3-D printing technology</topic><topic>Broadband</topic><topic>Coordinate transformations</topic><topic>Dual imaging</topic><topic>Electromagnetics</topic><topic>Equivalent circuits</topic><topic>Imaging</topic><topic>Media</topic><topic>Metamaterials</topic><topic>Nanoparticles</topic><topic>Printing</topic><topic>Ray tracing</topic><topic>Resins</topic><topic>spatially discontinuous boundary (SDB)</topic><topic>Three dimensional printing</topic><topic>Titanium dioxide</topic><topic>transformation electromagnetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takano, Yuma</creatorcontrib><creatorcontrib>Sanada, Atsushi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Takano, Yuma</au><au>Sanada, Atsushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual Imaging Metamaterial Composed of Periodic Bi-Fold Transformation Media Made of 3-D Printed TiO2 Nanoparticles Mixed Resin</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2021-08-01</date><risdate>2021</risdate><volume>69</volume><issue>8</issue><spage>3616</spage><epage>3623</epage><pages>3616-3623</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>Broadband operation of a dual imaging metamaterial composed of periodic bi-fold transformation media made of 3-D printed TiO 2 nanoparticles mixed resin is demonstrated. Peculiar refractions on the spatially discontinuous boundaries (SDBs) and refractions along with the coordinate transformations in the bi-fold transformation media are taken into account and the dual imaging conditions are derived based on the ray-tracing method. The dual imaging metamaterial operating with the incident angles of ±30° is designed and its operation is numerically demonstrated by the ray-tracing method and the equivalent circuit simulations. The bi-fold transformation media are implemented by the TiO 2 mixed resin with the experimentally obtained permittivity of 3.2 with a mass fraction of 0.075. The operation of the fabricated metamaterial is also confirmed by the near-field measurements. The energy transmittances well correspond to those of the simulated results. The bandwidth evaluated by the energy transmittances shows broadband operation as wide as from 30 to 40 GHz.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2021.3087711</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-2642-5296</orcidid><orcidid>https://orcid.org/0000-0002-1338-7895</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2021-08, Vol.69 (8), p.3616-3623 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_proquest_journals_2558825381 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D printing technology Broadband Coordinate transformations Dual imaging Electromagnetics Equivalent circuits Imaging Media Metamaterials Nanoparticles Printing Ray tracing Resins spatially discontinuous boundary (SDB) Three dimensional printing Titanium dioxide transformation electromagnetics |
title | Dual Imaging Metamaterial Composed of Periodic Bi-Fold Transformation Media Made of 3-D Printed TiO2 Nanoparticles Mixed Resin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T11%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20Imaging%20Metamaterial%20Composed%20of%20Periodic%20Bi-Fold%20Transformation%20Media%20Made%20of%203-D%20Printed%20TiO2%20Nanoparticles%20Mixed%20Resin&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Takano,%20Yuma&rft.date=2021-08-01&rft.volume=69&rft.issue=8&rft.spage=3616&rft.epage=3623&rft.pages=3616-3623&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2021.3087711&rft_dat=%3Cproquest_RIE%3E2558825381%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558825381&rft_id=info:pmid/&rft_ieee_id=9459469&rfr_iscdi=true |