BraggNet: Complex Photonic Integrated Circuit Reconstruction Using Deep Learning

We propose a deep learning model to reconstruct physical designs of complex coupled photonic systems, such as waveguide Bragg gratings, from their spectral responses for inverse design and fabrication diagnosis. Traditional reconstructing algorithms demand considerable computing resources at every q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of selected topics in quantum electronics 2021-11, Vol.27 (6), p.1-9
Hauptverfasser: Cauchon, Jonathan, Vallee, Jean-Michel, St-Yves, Jonathan, Shi, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue 6
container_start_page 1
container_title IEEE journal of selected topics in quantum electronics
container_volume 27
creator Cauchon, Jonathan
Vallee, Jean-Michel
St-Yves, Jonathan
Shi, Wei
description We propose a deep learning model to reconstruct physical designs of complex coupled photonic systems, such as waveguide Bragg gratings, from their spectral responses for inverse design and fabrication diagnosis. Traditional reconstructing algorithms demand considerable computing resources at every query. Conversely, machine learning algorithms use most of the computing resources during the training process and provide effortless and orders-of-magnitude faster analysis in response to queries. This approach is demonstrated using silicon photonic grating-assisted, contra-directional couplers consisting of thousands of Bragg periods. The contra-directional couplers are modeled as coupled cavities, for which a transfer matrix model is used to generate a synthetic dataset comprising a strategic design parameter space. The free-form, architecture-independent model allows to include any geometries to the design parameter space. Upon proper training, the model achieves 1.4% mean absolute percentage error on device reconstruction and thus proves suitable for inverse design applications. To further show its potential for assessment of fabricated devices, another dataset is generated to emulate the fabrication conditions of a nominal design hindered by fabrication imperfections. The model is shown to reconstruct devices from experimental measurements with greater than 600-fold improvement in speed compared to the classical layer-peeling algorithm. This proves promising for data-driven processes required by Industry 4.0.
doi_str_mv 10.1109/JSTQE.2021.3096421
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2558824704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9483644</ieee_id><sourcerecordid>2558824704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-4fdd31369c579fa6f5c4ec87106910fd9d64cecaa0773857087ccb2666b9c20f3</originalsourceid><addsrcrecordid>eNo9kEFPwzAMhSMEEmPwB-ASiXNHkqZpwg3KgKEJBmwStyhL3dJpa0uSSvDv6djEybb0nv38IXROyYhSoq6e3uev4xEjjI5iogRn9AANaJLIiCecHfY9SdOICfJxjE68XxFCJJdkgGa3zpTlM4RrnDWbdg3fePbZhKauLJ7UAUpnAuQ4q5ztqoDfwDa1D66zoWpqvPBVXeI7gBZPwbi6n07RUWHWHs72dYgW9-N59hhNXx4m2c00skwlIeJFnsc0FsomqSqMKBLLwcqUEqEoKXKVC27BGtPnjmWSEplau2RCiKWyjBTxEF3u9rau-erAB71qOlf3JzXr_5aMp4T3KrZTWdd476DQras2xv1oSvSWnP4jp7fk9J5cb7rYmSoA-DcoLmPBefwLLLtqQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558824704</pqid></control><display><type>article</type><title>BraggNet: Complex Photonic Integrated Circuit Reconstruction Using Deep Learning</title><source>IEEE Electronic Library (IEL)</source><creator>Cauchon, Jonathan ; Vallee, Jean-Michel ; St-Yves, Jonathan ; Shi, Wei</creator><creatorcontrib>Cauchon, Jonathan ; Vallee, Jean-Michel ; St-Yves, Jonathan ; Shi, Wei</creatorcontrib><description>We propose a deep learning model to reconstruct physical designs of complex coupled photonic systems, such as waveguide Bragg gratings, from their spectral responses for inverse design and fabrication diagnosis. Traditional reconstructing algorithms demand considerable computing resources at every query. Conversely, machine learning algorithms use most of the computing resources during the training process and provide effortless and orders-of-magnitude faster analysis in response to queries. This approach is demonstrated using silicon photonic grating-assisted, contra-directional couplers consisting of thousands of Bragg periods. The contra-directional couplers are modeled as coupled cavities, for which a transfer matrix model is used to generate a synthetic dataset comprising a strategic design parameter space. The free-form, architecture-independent model allows to include any geometries to the design parameter space. Upon proper training, the model achieves 1.4% mean absolute percentage error on device reconstruction and thus proves suitable for inverse design applications. To further show its potential for assessment of fabricated devices, another dataset is generated to emulate the fabrication conditions of a nominal design hindered by fabrication imperfections. The model is shown to reconstruct devices from experimental measurements with greater than 600-fold improvement in speed compared to the classical layer-peeling algorithm. This proves promising for data-driven processes required by Industry 4.0.</description><identifier>ISSN: 1077-260X</identifier><identifier>EISSN: 1558-4542</identifier><identifier>DOI: 10.1109/JSTQE.2021.3096421</identifier><identifier>CODEN: IJSQEN</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; artificial intelligence ; Bragg gratings ; Computation ; Computational modeling ; Datasets ; Deep learning ; Design parameters ; Directional couplers ; fabrication diagnosis ; Free form ; Gratings ; Industrial applications ; Integrated circuit modeling ; Integrated circuits ; Inverse design ; Machine learning ; Mathematical models ; neural networks ; Optical waveguides ; photonic integrated circuits ; Photonics ; Reconstruction ; Silicon photonics ; Training ; Transfer matrices ; Transmission line matrix methods ; Waveguides</subject><ispartof>IEEE journal of selected topics in quantum electronics, 2021-11, Vol.27 (6), p.1-9</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-4fdd31369c579fa6f5c4ec87106910fd9d64cecaa0773857087ccb2666b9c20f3</citedby><cites>FETCH-LOGICAL-c295t-4fdd31369c579fa6f5c4ec87106910fd9d64cecaa0773857087ccb2666b9c20f3</cites><orcidid>0000-0001-5781-9912 ; 0000-0002-2470-709X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9483644$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9483644$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cauchon, Jonathan</creatorcontrib><creatorcontrib>Vallee, Jean-Michel</creatorcontrib><creatorcontrib>St-Yves, Jonathan</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><title>BraggNet: Complex Photonic Integrated Circuit Reconstruction Using Deep Learning</title><title>IEEE journal of selected topics in quantum electronics</title><addtitle>JSTQE</addtitle><description>We propose a deep learning model to reconstruct physical designs of complex coupled photonic systems, such as waveguide Bragg gratings, from their spectral responses for inverse design and fabrication diagnosis. Traditional reconstructing algorithms demand considerable computing resources at every query. Conversely, machine learning algorithms use most of the computing resources during the training process and provide effortless and orders-of-magnitude faster analysis in response to queries. This approach is demonstrated using silicon photonic grating-assisted, contra-directional couplers consisting of thousands of Bragg periods. The contra-directional couplers are modeled as coupled cavities, for which a transfer matrix model is used to generate a synthetic dataset comprising a strategic design parameter space. The free-form, architecture-independent model allows to include any geometries to the design parameter space. Upon proper training, the model achieves 1.4% mean absolute percentage error on device reconstruction and thus proves suitable for inverse design applications. To further show its potential for assessment of fabricated devices, another dataset is generated to emulate the fabrication conditions of a nominal design hindered by fabrication imperfections. The model is shown to reconstruct devices from experimental measurements with greater than 600-fold improvement in speed compared to the classical layer-peeling algorithm. This proves promising for data-driven processes required by Industry 4.0.</description><subject>Algorithms</subject><subject>artificial intelligence</subject><subject>Bragg gratings</subject><subject>Computation</subject><subject>Computational modeling</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Design parameters</subject><subject>Directional couplers</subject><subject>fabrication diagnosis</subject><subject>Free form</subject><subject>Gratings</subject><subject>Industrial applications</subject><subject>Integrated circuit modeling</subject><subject>Integrated circuits</subject><subject>Inverse design</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>neural networks</subject><subject>Optical waveguides</subject><subject>photonic integrated circuits</subject><subject>Photonics</subject><subject>Reconstruction</subject><subject>Silicon photonics</subject><subject>Training</subject><subject>Transfer matrices</subject><subject>Transmission line matrix methods</subject><subject>Waveguides</subject><issn>1077-260X</issn><issn>1558-4542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFPwzAMhSMEEmPwB-ASiXNHkqZpwg3KgKEJBmwStyhL3dJpa0uSSvDv6djEybb0nv38IXROyYhSoq6e3uev4xEjjI5iogRn9AANaJLIiCecHfY9SdOICfJxjE68XxFCJJdkgGa3zpTlM4RrnDWbdg3fePbZhKauLJ7UAUpnAuQ4q5ztqoDfwDa1D66zoWpqvPBVXeI7gBZPwbi6n07RUWHWHs72dYgW9-N59hhNXx4m2c00skwlIeJFnsc0FsomqSqMKBLLwcqUEqEoKXKVC27BGtPnjmWSEplau2RCiKWyjBTxEF3u9rau-erAB71qOlf3JzXr_5aMp4T3KrZTWdd476DQras2xv1oSvSWnP4jp7fk9J5cb7rYmSoA-DcoLmPBefwLLLtqQg</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Cauchon, Jonathan</creator><creator>Vallee, Jean-Michel</creator><creator>St-Yves, Jonathan</creator><creator>Shi, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5781-9912</orcidid><orcidid>https://orcid.org/0000-0002-2470-709X</orcidid></search><sort><creationdate>20211101</creationdate><title>BraggNet: Complex Photonic Integrated Circuit Reconstruction Using Deep Learning</title><author>Cauchon, Jonathan ; Vallee, Jean-Michel ; St-Yves, Jonathan ; Shi, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-4fdd31369c579fa6f5c4ec87106910fd9d64cecaa0773857087ccb2666b9c20f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>artificial intelligence</topic><topic>Bragg gratings</topic><topic>Computation</topic><topic>Computational modeling</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Design parameters</topic><topic>Directional couplers</topic><topic>fabrication diagnosis</topic><topic>Free form</topic><topic>Gratings</topic><topic>Industrial applications</topic><topic>Integrated circuit modeling</topic><topic>Integrated circuits</topic><topic>Inverse design</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>neural networks</topic><topic>Optical waveguides</topic><topic>photonic integrated circuits</topic><topic>Photonics</topic><topic>Reconstruction</topic><topic>Silicon photonics</topic><topic>Training</topic><topic>Transfer matrices</topic><topic>Transmission line matrix methods</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cauchon, Jonathan</creatorcontrib><creatorcontrib>Vallee, Jean-Michel</creatorcontrib><creatorcontrib>St-Yves, Jonathan</creatorcontrib><creatorcontrib>Shi, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of selected topics in quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cauchon, Jonathan</au><au>Vallee, Jean-Michel</au><au>St-Yves, Jonathan</au><au>Shi, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BraggNet: Complex Photonic Integrated Circuit Reconstruction Using Deep Learning</atitle><jtitle>IEEE journal of selected topics in quantum electronics</jtitle><stitle>JSTQE</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>27</volume><issue>6</issue><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1077-260X</issn><eissn>1558-4542</eissn><coden>IJSQEN</coden><abstract>We propose a deep learning model to reconstruct physical designs of complex coupled photonic systems, such as waveguide Bragg gratings, from their spectral responses for inverse design and fabrication diagnosis. Traditional reconstructing algorithms demand considerable computing resources at every query. Conversely, machine learning algorithms use most of the computing resources during the training process and provide effortless and orders-of-magnitude faster analysis in response to queries. This approach is demonstrated using silicon photonic grating-assisted, contra-directional couplers consisting of thousands of Bragg periods. The contra-directional couplers are modeled as coupled cavities, for which a transfer matrix model is used to generate a synthetic dataset comprising a strategic design parameter space. The free-form, architecture-independent model allows to include any geometries to the design parameter space. Upon proper training, the model achieves 1.4% mean absolute percentage error on device reconstruction and thus proves suitable for inverse design applications. To further show its potential for assessment of fabricated devices, another dataset is generated to emulate the fabrication conditions of a nominal design hindered by fabrication imperfections. The model is shown to reconstruct devices from experimental measurements with greater than 600-fold improvement in speed compared to the classical layer-peeling algorithm. This proves promising for data-driven processes required by Industry 4.0.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSTQE.2021.3096421</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-5781-9912</orcidid><orcidid>https://orcid.org/0000-0002-2470-709X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1077-260X
ispartof IEEE journal of selected topics in quantum electronics, 2021-11, Vol.27 (6), p.1-9
issn 1077-260X
1558-4542
language eng
recordid cdi_proquest_journals_2558824704
source IEEE Electronic Library (IEL)
subjects Algorithms
artificial intelligence
Bragg gratings
Computation
Computational modeling
Datasets
Deep learning
Design parameters
Directional couplers
fabrication diagnosis
Free form
Gratings
Industrial applications
Integrated circuit modeling
Integrated circuits
Inverse design
Machine learning
Mathematical models
neural networks
Optical waveguides
photonic integrated circuits
Photonics
Reconstruction
Silicon photonics
Training
Transfer matrices
Transmission line matrix methods
Waveguides
title BraggNet: Complex Photonic Integrated Circuit Reconstruction Using Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BraggNet:%20Complex%20Photonic%20Integrated%20Circuit%20Reconstruction%20Using%20Deep%20Learning&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20quantum%20electronics&rft.au=Cauchon,%20Jonathan&rft.date=2021-11-01&rft.volume=27&rft.issue=6&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1077-260X&rft.eissn=1558-4542&rft.coden=IJSQEN&rft_id=info:doi/10.1109/JSTQE.2021.3096421&rft_dat=%3Cproquest_RIE%3E2558824704%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558824704&rft_id=info:pmid/&rft_ieee_id=9483644&rfr_iscdi=true