A Note on On-Line Ramsey Numbers of Stars and Paths

An on-line Ramsey game is a game between two players, Builder and Painter, on an initially empty graph with unbounded set of vertices. In each round, Builder selects two vertices and joins them with an edge while Painter colours the edge immediately with either red or blue. Builder’s aim is to force...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2021, Vol.44 (5), p.3511-3521
Hauptverfasser: Mohd Latip, Fatin Nur Nadia Binti, Tan, Ta Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3521
container_issue 5
container_start_page 3511
container_title Bulletin of the Malaysian Mathematical Sciences Society
container_volume 44
creator Mohd Latip, Fatin Nur Nadia Binti
Tan, Ta Sheng
description An on-line Ramsey game is a game between two players, Builder and Painter, on an initially empty graph with unbounded set of vertices. In each round, Builder selects two vertices and joins them with an edge while Painter colours the edge immediately with either red or blue. Builder’s aim is to force either a red copy of a fixed graph G or a blue copy of a fixed graph H . The game ends with Builder’s victory when Builder manages to force either a red G or a blue H . The minimum number of rounds for Builder to win the game, regardless of Painter’s strategy, is the on-line Ramsey number r ~ ( G , H ) . This note focuses on the case when G and H are stars and paths. In particular, we will prove the upper bound of r ~ ( S 3 , P l + 1 ) ≤ 5 l / 3 + 2 . We will also present an alternative proof for the upper bound of r ~ ( S 2 = P 3 , P l + 1 ) = ⌈ 5 l / 4 ⌉ .
doi_str_mv 10.1007/s40840-021-01130-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2558574718</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558574718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-954f54dde8eceed28ce70c8f47d3106a29b93381e85740da28604ba57a0743ac3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGr_gKeA5-jkO3ssxS8orfhxDtndWW2xuzXZQvvvTV3Bm3OZObzPO_AQcsnhmgPYm6TAKWAgOAPOJbD9CRkJ7oApAeaUjIALw4wFfU4mKa0hjzbCCD4ickoXXY-0a-myZfNVi_Q5bBIe6GK3KTEm2jX0pQ_5CG1Nn0L_kS7IWRM-E05-95i83d2-zh7YfHn_OJvOWSV50bNCq0arukaHFWItXIUWKtcoW0sOJoiiLKR0HJ22CuognAFVBm0DWCVDJcfkaujdxu5rh6n3624X2_zSC62PlOUup8SQqmKXUsTGb-NqE-LBc_BHP37w47Mf_-PH7zMkByjlcPuO8a_6H-obvR5lrg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558574718</pqid></control><display><type>article</type><title>A Note on On-Line Ramsey Numbers of Stars and Paths</title><source>SpringerNature Journals</source><creator>Mohd Latip, Fatin Nur Nadia Binti ; Tan, Ta Sheng</creator><creatorcontrib>Mohd Latip, Fatin Nur Nadia Binti ; Tan, Ta Sheng</creatorcontrib><description>An on-line Ramsey game is a game between two players, Builder and Painter, on an initially empty graph with unbounded set of vertices. In each round, Builder selects two vertices and joins them with an edge while Painter colours the edge immediately with either red or blue. Builder’s aim is to force either a red copy of a fixed graph G or a blue copy of a fixed graph H . The game ends with Builder’s victory when Builder manages to force either a red G or a blue H . The minimum number of rounds for Builder to win the game, regardless of Painter’s strategy, is the on-line Ramsey number r ~ ( G , H ) . This note focuses on the case when G and H are stars and paths. In particular, we will prove the upper bound of r ~ ( S 3 , P l + 1 ) ≤ 5 l / 3 + 2 . We will also present an alternative proof for the upper bound of r ~ ( S 2 = P 3 , P l + 1 ) = ⌈ 5 l / 4 ⌉ .</description><identifier>ISSN: 0126-6705</identifier><identifier>EISSN: 2180-4206</identifier><identifier>DOI: 10.1007/s40840-021-01130-x</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Apexes ; Applications of Mathematics ; Games ; Graph coloring ; Graph theory ; Mathematics ; Mathematics and Statistics ; Upper bounds</subject><ispartof>Bulletin of the Malaysian Mathematical Sciences Society, 2021, Vol.44 (5), p.3511-3521</ispartof><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2021</rights><rights>Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-954f54dde8eceed28ce70c8f47d3106a29b93381e85740da28604ba57a0743ac3</citedby><cites>FETCH-LOGICAL-c319t-954f54dde8eceed28ce70c8f47d3106a29b93381e85740da28604ba57a0743ac3</cites><orcidid>0000-0002-5739-3242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40840-021-01130-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40840-021-01130-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mohd Latip, Fatin Nur Nadia Binti</creatorcontrib><creatorcontrib>Tan, Ta Sheng</creatorcontrib><title>A Note on On-Line Ramsey Numbers of Stars and Paths</title><title>Bulletin of the Malaysian Mathematical Sciences Society</title><addtitle>Bull. Malays. Math. Sci. Soc</addtitle><description>An on-line Ramsey game is a game between two players, Builder and Painter, on an initially empty graph with unbounded set of vertices. In each round, Builder selects two vertices and joins them with an edge while Painter colours the edge immediately with either red or blue. Builder’s aim is to force either a red copy of a fixed graph G or a blue copy of a fixed graph H . The game ends with Builder’s victory when Builder manages to force either a red G or a blue H . The minimum number of rounds for Builder to win the game, regardless of Painter’s strategy, is the on-line Ramsey number r ~ ( G , H ) . This note focuses on the case when G and H are stars and paths. In particular, we will prove the upper bound of r ~ ( S 3 , P l + 1 ) ≤ 5 l / 3 + 2 . We will also present an alternative proof for the upper bound of r ~ ( S 2 = P 3 , P l + 1 ) = ⌈ 5 l / 4 ⌉ .</description><subject>Apexes</subject><subject>Applications of Mathematics</subject><subject>Games</subject><subject>Graph coloring</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Upper bounds</subject><issn>0126-6705</issn><issn>2180-4206</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGr_gKeA5-jkO3ssxS8orfhxDtndWW2xuzXZQvvvTV3Bm3OZObzPO_AQcsnhmgPYm6TAKWAgOAPOJbD9CRkJ7oApAeaUjIALw4wFfU4mKa0hjzbCCD4ickoXXY-0a-myZfNVi_Q5bBIe6GK3KTEm2jX0pQ_5CG1Nn0L_kS7IWRM-E05-95i83d2-zh7YfHn_OJvOWSV50bNCq0arukaHFWItXIUWKtcoW0sOJoiiLKR0HJ22CuognAFVBm0DWCVDJcfkaujdxu5rh6n3624X2_zSC62PlOUup8SQqmKXUsTGb-NqE-LBc_BHP37w47Mf_-PH7zMkByjlcPuO8a_6H-obvR5lrg</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Mohd Latip, Fatin Nur Nadia Binti</creator><creator>Tan, Ta Sheng</creator><general>Springer Singapore</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5739-3242</orcidid></search><sort><creationdate>2021</creationdate><title>A Note on On-Line Ramsey Numbers of Stars and Paths</title><author>Mohd Latip, Fatin Nur Nadia Binti ; Tan, Ta Sheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-954f54dde8eceed28ce70c8f47d3106a29b93381e85740da28604ba57a0743ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Applications of Mathematics</topic><topic>Games</topic><topic>Graph coloring</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohd Latip, Fatin Nur Nadia Binti</creatorcontrib><creatorcontrib>Tan, Ta Sheng</creatorcontrib><collection>CrossRef</collection><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohd Latip, Fatin Nur Nadia Binti</au><au>Tan, Ta Sheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on On-Line Ramsey Numbers of Stars and Paths</atitle><jtitle>Bulletin of the Malaysian Mathematical Sciences Society</jtitle><stitle>Bull. Malays. Math. Sci. Soc</stitle><date>2021</date><risdate>2021</risdate><volume>44</volume><issue>5</issue><spage>3511</spage><epage>3521</epage><pages>3511-3521</pages><issn>0126-6705</issn><eissn>2180-4206</eissn><abstract>An on-line Ramsey game is a game between two players, Builder and Painter, on an initially empty graph with unbounded set of vertices. In each round, Builder selects two vertices and joins them with an edge while Painter colours the edge immediately with either red or blue. Builder’s aim is to force either a red copy of a fixed graph G or a blue copy of a fixed graph H . The game ends with Builder’s victory when Builder manages to force either a red G or a blue H . The minimum number of rounds for Builder to win the game, regardless of Painter’s strategy, is the on-line Ramsey number r ~ ( G , H ) . This note focuses on the case when G and H are stars and paths. In particular, we will prove the upper bound of r ~ ( S 3 , P l + 1 ) ≤ 5 l / 3 + 2 . We will also present an alternative proof for the upper bound of r ~ ( S 2 = P 3 , P l + 1 ) = ⌈ 5 l / 4 ⌉ .</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s40840-021-01130-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5739-3242</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0126-6705
ispartof Bulletin of the Malaysian Mathematical Sciences Society, 2021, Vol.44 (5), p.3511-3521
issn 0126-6705
2180-4206
language eng
recordid cdi_proquest_journals_2558574718
source SpringerNature Journals
subjects Apexes
Applications of Mathematics
Games
Graph coloring
Graph theory
Mathematics
Mathematics and Statistics
Upper bounds
title A Note on On-Line Ramsey Numbers of Stars and Paths
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T14%3A38%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20On-Line%20Ramsey%20Numbers%20of%20Stars%20and%20Paths&rft.jtitle=Bulletin%20of%20the%20Malaysian%20Mathematical%20Sciences%20Society&rft.au=Mohd%20Latip,%20Fatin%20Nur%20Nadia%20Binti&rft.date=2021&rft.volume=44&rft.issue=5&rft.spage=3511&rft.epage=3521&rft.pages=3511-3521&rft.issn=0126-6705&rft.eissn=2180-4206&rft_id=info:doi/10.1007/s40840-021-01130-x&rft_dat=%3Cproquest_cross%3E2558574718%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558574718&rft_id=info:pmid/&rfr_iscdi=true