On the transition of reaction pathway during microwave plasma gas‐phase synthesis of graphene nanosheets: From amorphous to highly crystalline structure

Fourier‐transform infrared spectroscopy and proton‐transfer‐reaction–mass spectrometry are used in a complementary way to study gas‐phase processes during decomposition of ethanol in a microwave plasma torch. Decomposition products (C, C2 and simple hydrocarbons) reassemble into higher hydrocarbons...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plasma processes and polymers 2021-08, Vol.18 (8), p.n/a
Hauptverfasser: Toman, Jozef, Jašek, Ondřej, Šnírer, Miroslav, Pavliňák, David, Navrátil, Zdeněk, Jurmanová, Jana, Chudják, Stanislav, Krčma, František, Kudrle, Vít, Michalička, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title Plasma processes and polymers
container_volume 18
creator Toman, Jozef
Jašek, Ondřej
Šnírer, Miroslav
Pavliňák, David
Navrátil, Zdeněk
Jurmanová, Jana
Chudják, Stanislav
Krčma, František
Kudrle, Vít
Michalička, Jan
description Fourier‐transform infrared spectroscopy and proton‐transfer‐reaction–mass spectrometry are used in a complementary way to study gas‐phase processes during decomposition of ethanol in a microwave plasma torch. Decomposition products (C, C2 and simple hydrocarbons) reassemble into higher hydrocarbons and graphene nuclei and further grow into graphene nanosheets (GNS). Depending on microwave power, ethanol flow rate and molecular gas admixture, the material structure changes from amorphous to crystalline. The presence of C2n + 1H y species was found to be responsible for the formation of defects in the GNS structure. O2 and H2 admixtures change the gas temperature axial profile and consequently modify reaction pathways influencing growth and production rate of GNS. Determination of reaction pathway selectivity enables us to predict whether high‐quality or defective GNS are produced. Exceptionally stable geometry of the microwave plasma torch was reached by a separate external injection of hydrocarbon precursor into the microwave (MW) filament primary ignited and sustained in a pure argon atmosphere. Two discharge zones are visibly distinguished, representing a green‐glowing hot plasma zone emitted by C2 molecule and an orange‐glowing assembly zone, where graphene is formed. The gas temperature axial profile changes with MW power or addition of molecular admixture into the plasma, substantially affecting the geometry, and consequently the quality of synthesised graphene nanosheets can be engineered.
doi_str_mv 10.1002/ppap.202100008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2558446626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558446626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3178-684bd505f423f55c5ff24e28bf56463b525451ec3f31a9f8fc24cca05bae297b3</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhiMEEqWwMltibnGcOLhsVcWXhEQHmKOLsRtXiW18DlU2fgIzP49fQkoRjEx3J73Pe9KTJKcpnaaUsnPvwU8ZZcNBqdhLRmmRsokQxWz_d-f0MDlCXFOaUS7oKPl4sCTWisQAFk00zhKnSVAgv3cPsd5AT567YOyKtEYGt4FXRXwD2AJZAX6-vfsaUBHs7dCEBrcNqwC-VlYRC9ZhrVTES3IdXEugdcHXrkMSHanNqm56IkOPEZrGDADG0MnYBXWcHGhoUJ38zHHydH31uLid3D_c3C3m9xOZpRdiUoi8euaU65xlmnPJtWa5YqLSvMiLrOKM5zxVMtNZCjMttGS5lEB5BYrNLqpsnJzten1wL53CWK5dF-zwsmScizwvClYMqekuNRhADEqXPpgWQl-mtNz6L7f-y1__AzDbARvTqP6fdLlczpd_7BcSao9S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558446626</pqid></control><display><type>article</type><title>On the transition of reaction pathway during microwave plasma gas‐phase synthesis of graphene nanosheets: From amorphous to highly crystalline structure</title><source>Wiley Online Library All Journals</source><creator>Toman, Jozef ; Jašek, Ondřej ; Šnírer, Miroslav ; Pavliňák, David ; Navrátil, Zdeněk ; Jurmanová, Jana ; Chudják, Stanislav ; Krčma, František ; Kudrle, Vít ; Michalička, Jan</creator><creatorcontrib>Toman, Jozef ; Jašek, Ondřej ; Šnírer, Miroslav ; Pavliňák, David ; Navrátil, Zdeněk ; Jurmanová, Jana ; Chudják, Stanislav ; Krčma, František ; Kudrle, Vít ; Michalička, Jan</creatorcontrib><description>Fourier‐transform infrared spectroscopy and proton‐transfer‐reaction–mass spectrometry are used in a complementary way to study gas‐phase processes during decomposition of ethanol in a microwave plasma torch. Decomposition products (C, C2 and simple hydrocarbons) reassemble into higher hydrocarbons and graphene nuclei and further grow into graphene nanosheets (GNS). Depending on microwave power, ethanol flow rate and molecular gas admixture, the material structure changes from amorphous to crystalline. The presence of C2n + 1H y species was found to be responsible for the formation of defects in the GNS structure. O2 and H2 admixtures change the gas temperature axial profile and consequently modify reaction pathways influencing growth and production rate of GNS. Determination of reaction pathway selectivity enables us to predict whether high‐quality or defective GNS are produced. Exceptionally stable geometry of the microwave plasma torch was reached by a separate external injection of hydrocarbon precursor into the microwave (MW) filament primary ignited and sustained in a pure argon atmosphere. Two discharge zones are visibly distinguished, representing a green‐glowing hot plasma zone emitted by C2 molecule and an orange‐glowing assembly zone, where graphene is formed. The gas temperature axial profile changes with MW power or addition of molecular admixture into the plasma, substantially affecting the geometry, and consequently the quality of synthesised graphene nanosheets can be engineered.</description><identifier>ISSN: 1612-8850</identifier><identifier>EISSN: 1612-8869</identifier><identifier>DOI: 10.1002/ppap.202100008</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>admixture ; Amorphous materials ; Amorphous structure ; Crystal defects ; Crystal structure ; Crystallinity ; Decomposition ; Ethanol ; Flow velocity ; Gas temperature ; Graphene ; graphene nanosheets ; Hydrocarbons ; Mass spectrometry ; microwave plasma ; Microwave plasmas ; Molecular gases ; Molecular structure ; Nanosheets ; nucleation ; plasma synthesis ; Selectivity</subject><ispartof>Plasma processes and polymers, 2021-08, Vol.18 (8), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3178-684bd505f423f55c5ff24e28bf56463b525451ec3f31a9f8fc24cca05bae297b3</citedby><cites>FETCH-LOGICAL-c3178-684bd505f423f55c5ff24e28bf56463b525451ec3f31a9f8fc24cca05bae297b3</cites><orcidid>0000-0001-6231-0061 ; 0000-0002-8391-8073 ; 0000-0001-9669-7946 ; 0000-0002-1416-794X ; 0000-0003-0534-5262 ; 0000-0003-4418-3323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fppap.202100008$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fppap.202100008$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Toman, Jozef</creatorcontrib><creatorcontrib>Jašek, Ondřej</creatorcontrib><creatorcontrib>Šnírer, Miroslav</creatorcontrib><creatorcontrib>Pavliňák, David</creatorcontrib><creatorcontrib>Navrátil, Zdeněk</creatorcontrib><creatorcontrib>Jurmanová, Jana</creatorcontrib><creatorcontrib>Chudják, Stanislav</creatorcontrib><creatorcontrib>Krčma, František</creatorcontrib><creatorcontrib>Kudrle, Vít</creatorcontrib><creatorcontrib>Michalička, Jan</creatorcontrib><title>On the transition of reaction pathway during microwave plasma gas‐phase synthesis of graphene nanosheets: From amorphous to highly crystalline structure</title><title>Plasma processes and polymers</title><description>Fourier‐transform infrared spectroscopy and proton‐transfer‐reaction–mass spectrometry are used in a complementary way to study gas‐phase processes during decomposition of ethanol in a microwave plasma torch. Decomposition products (C, C2 and simple hydrocarbons) reassemble into higher hydrocarbons and graphene nuclei and further grow into graphene nanosheets (GNS). Depending on microwave power, ethanol flow rate and molecular gas admixture, the material structure changes from amorphous to crystalline. The presence of C2n + 1H y species was found to be responsible for the formation of defects in the GNS structure. O2 and H2 admixtures change the gas temperature axial profile and consequently modify reaction pathways influencing growth and production rate of GNS. Determination of reaction pathway selectivity enables us to predict whether high‐quality or defective GNS are produced. Exceptionally stable geometry of the microwave plasma torch was reached by a separate external injection of hydrocarbon precursor into the microwave (MW) filament primary ignited and sustained in a pure argon atmosphere. Two discharge zones are visibly distinguished, representing a green‐glowing hot plasma zone emitted by C2 molecule and an orange‐glowing assembly zone, where graphene is formed. The gas temperature axial profile changes with MW power or addition of molecular admixture into the plasma, substantially affecting the geometry, and consequently the quality of synthesised graphene nanosheets can be engineered.</description><subject>admixture</subject><subject>Amorphous materials</subject><subject>Amorphous structure</subject><subject>Crystal defects</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Decomposition</subject><subject>Ethanol</subject><subject>Flow velocity</subject><subject>Gas temperature</subject><subject>Graphene</subject><subject>graphene nanosheets</subject><subject>Hydrocarbons</subject><subject>Mass spectrometry</subject><subject>microwave plasma</subject><subject>Microwave plasmas</subject><subject>Molecular gases</subject><subject>Molecular structure</subject><subject>Nanosheets</subject><subject>nucleation</subject><subject>plasma synthesis</subject><subject>Selectivity</subject><issn>1612-8850</issn><issn>1612-8869</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAQhiMEEqWwMltibnGcOLhsVcWXhEQHmKOLsRtXiW18DlU2fgIzP49fQkoRjEx3J73Pe9KTJKcpnaaUsnPvwU8ZZcNBqdhLRmmRsokQxWz_d-f0MDlCXFOaUS7oKPl4sCTWisQAFk00zhKnSVAgv3cPsd5AT567YOyKtEYGt4FXRXwD2AJZAX6-vfsaUBHs7dCEBrcNqwC-VlYRC9ZhrVTES3IdXEugdcHXrkMSHanNqm56IkOPEZrGDADG0MnYBXWcHGhoUJ38zHHydH31uLid3D_c3C3m9xOZpRdiUoi8euaU65xlmnPJtWa5YqLSvMiLrOKM5zxVMtNZCjMttGS5lEB5BYrNLqpsnJzten1wL53CWK5dF-zwsmScizwvClYMqekuNRhADEqXPpgWQl-mtNz6L7f-y1__AzDbARvTqP6fdLlczpd_7BcSao9S</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Toman, Jozef</creator><creator>Jašek, Ondřej</creator><creator>Šnírer, Miroslav</creator><creator>Pavliňák, David</creator><creator>Navrátil, Zdeněk</creator><creator>Jurmanová, Jana</creator><creator>Chudják, Stanislav</creator><creator>Krčma, František</creator><creator>Kudrle, Vít</creator><creator>Michalička, Jan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6231-0061</orcidid><orcidid>https://orcid.org/0000-0002-8391-8073</orcidid><orcidid>https://orcid.org/0000-0001-9669-7946</orcidid><orcidid>https://orcid.org/0000-0002-1416-794X</orcidid><orcidid>https://orcid.org/0000-0003-0534-5262</orcidid><orcidid>https://orcid.org/0000-0003-4418-3323</orcidid></search><sort><creationdate>202108</creationdate><title>On the transition of reaction pathway during microwave plasma gas‐phase synthesis of graphene nanosheets: From amorphous to highly crystalline structure</title><author>Toman, Jozef ; Jašek, Ondřej ; Šnírer, Miroslav ; Pavliňák, David ; Navrátil, Zdeněk ; Jurmanová, Jana ; Chudják, Stanislav ; Krčma, František ; Kudrle, Vít ; Michalička, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3178-684bd505f423f55c5ff24e28bf56463b525451ec3f31a9f8fc24cca05bae297b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>admixture</topic><topic>Amorphous materials</topic><topic>Amorphous structure</topic><topic>Crystal defects</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Decomposition</topic><topic>Ethanol</topic><topic>Flow velocity</topic><topic>Gas temperature</topic><topic>Graphene</topic><topic>graphene nanosheets</topic><topic>Hydrocarbons</topic><topic>Mass spectrometry</topic><topic>microwave plasma</topic><topic>Microwave plasmas</topic><topic>Molecular gases</topic><topic>Molecular structure</topic><topic>Nanosheets</topic><topic>nucleation</topic><topic>plasma synthesis</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Toman, Jozef</creatorcontrib><creatorcontrib>Jašek, Ondřej</creatorcontrib><creatorcontrib>Šnírer, Miroslav</creatorcontrib><creatorcontrib>Pavliňák, David</creatorcontrib><creatorcontrib>Navrátil, Zdeněk</creatorcontrib><creatorcontrib>Jurmanová, Jana</creatorcontrib><creatorcontrib>Chudják, Stanislav</creatorcontrib><creatorcontrib>Krčma, František</creatorcontrib><creatorcontrib>Kudrle, Vít</creatorcontrib><creatorcontrib>Michalička, Jan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Plasma processes and polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Toman, Jozef</au><au>Jašek, Ondřej</au><au>Šnírer, Miroslav</au><au>Pavliňák, David</au><au>Navrátil, Zdeněk</au><au>Jurmanová, Jana</au><au>Chudják, Stanislav</au><au>Krčma, František</au><au>Kudrle, Vít</au><au>Michalička, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the transition of reaction pathway during microwave plasma gas‐phase synthesis of graphene nanosheets: From amorphous to highly crystalline structure</atitle><jtitle>Plasma processes and polymers</jtitle><date>2021-08</date><risdate>2021</risdate><volume>18</volume><issue>8</issue><epage>n/a</epage><issn>1612-8850</issn><eissn>1612-8869</eissn><abstract>Fourier‐transform infrared spectroscopy and proton‐transfer‐reaction–mass spectrometry are used in a complementary way to study gas‐phase processes during decomposition of ethanol in a microwave plasma torch. Decomposition products (C, C2 and simple hydrocarbons) reassemble into higher hydrocarbons and graphene nuclei and further grow into graphene nanosheets (GNS). Depending on microwave power, ethanol flow rate and molecular gas admixture, the material structure changes from amorphous to crystalline. The presence of C2n + 1H y species was found to be responsible for the formation of defects in the GNS structure. O2 and H2 admixtures change the gas temperature axial profile and consequently modify reaction pathways influencing growth and production rate of GNS. Determination of reaction pathway selectivity enables us to predict whether high‐quality or defective GNS are produced. Exceptionally stable geometry of the microwave plasma torch was reached by a separate external injection of hydrocarbon precursor into the microwave (MW) filament primary ignited and sustained in a pure argon atmosphere. Two discharge zones are visibly distinguished, representing a green‐glowing hot plasma zone emitted by C2 molecule and an orange‐glowing assembly zone, where graphene is formed. The gas temperature axial profile changes with MW power or addition of molecular admixture into the plasma, substantially affecting the geometry, and consequently the quality of synthesised graphene nanosheets can be engineered.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ppap.202100008</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6231-0061</orcidid><orcidid>https://orcid.org/0000-0002-8391-8073</orcidid><orcidid>https://orcid.org/0000-0001-9669-7946</orcidid><orcidid>https://orcid.org/0000-0002-1416-794X</orcidid><orcidid>https://orcid.org/0000-0003-0534-5262</orcidid><orcidid>https://orcid.org/0000-0003-4418-3323</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1612-8850
ispartof Plasma processes and polymers, 2021-08, Vol.18 (8), p.n/a
issn 1612-8850
1612-8869
language eng
recordid cdi_proquest_journals_2558446626
source Wiley Online Library All Journals
subjects admixture
Amorphous materials
Amorphous structure
Crystal defects
Crystal structure
Crystallinity
Decomposition
Ethanol
Flow velocity
Gas temperature
Graphene
graphene nanosheets
Hydrocarbons
Mass spectrometry
microwave plasma
Microwave plasmas
Molecular gases
Molecular structure
Nanosheets
nucleation
plasma synthesis
Selectivity
title On the transition of reaction pathway during microwave plasma gas‐phase synthesis of graphene nanosheets: From amorphous to highly crystalline structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T21%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20transition%20of%20reaction%20pathway%20during%20microwave%20plasma%20gas%E2%80%90phase%20synthesis%20of%20graphene%20nanosheets:%20From%20amorphous%20to%20highly%20crystalline%20structure&rft.jtitle=Plasma%20processes%20and%20polymers&rft.au=Toman,%20Jozef&rft.date=2021-08&rft.volume=18&rft.issue=8&rft.epage=n/a&rft.issn=1612-8850&rft.eissn=1612-8869&rft_id=info:doi/10.1002/ppap.202100008&rft_dat=%3Cproquest_cross%3E2558446626%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558446626&rft_id=info:pmid/&rfr_iscdi=true