Simplifying concentration-polarization of trace-ions in pressure-driven membrane processes

Accounting for concentration-polarization (CP) is critical for modeling solute transport in membrane separation processes. In a mixed-electrolyte solution, ions CP is affected not only by diffusion and advection but also by electromigration. Yet, the classic film model, lacking an electromigration t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2021-08
Hauptverfasser: Oren, Yaeli S, Freger, Viatcheslav, Nir, Oded
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Oren, Yaeli S
Freger, Viatcheslav
Nir, Oded
description Accounting for concentration-polarization (CP) is critical for modeling solute transport in membrane separation processes. In a mixed-electrolyte solution, ions CP is affected not only by diffusion and advection but also by electromigration. Yet, the classic film model, lacking an electromigration term, is frequently used for modeling ion CP. Often, ion CP is altogether neglected to reduce the computational load. Here, we study the CP of trace ions in a dominant salt solution, a case relevant for many reverse-osmosis and nanofiltration processes. First, we revisit the solution-diffusion-electromigration-film theory to obtain an analytical solution for the CP and membrane-transport of trace-ions in a dominant salt solution. Secondly, we consider limiting conditions relevant to reverse-osmosis and nanofiltration, from which we derive two compact equations that emerge as a seamless extension to the classic film theory. These equations can be used to account for the effect of electromigration on CP with minimal effort. Thirdly, we use our theory to quantify the effect of electromigration on ion CP in different dominant salt solutions. Finally, by analyzing two environmental membrane processes, we demonstrate how our theory deviates from the conventional one and quantify the implications on membrane scaling potential and the transport of ionic contaminants.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2558277327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558277327</sourcerecordid><originalsourceid>FETCH-proquest_journals_25582773273</originalsourceid><addsrcrecordid>eNqNjsEKwjAQRIMgWLT_EPAcqIk1vYviXU9eJMatpLSbutsK-vUG8QM8DW_eHGYiMm3MSlVrrWciZ26KotAbq8vSZOJ8DF3fhvoV8C59RA84kBtCRNXH1lF4f0HGWqbeg0rAMqDsCZhHAnWj8ASUHXRXcghJRJ8U8EJMa9cy5L-ci-V-d9oeVFo8RuDh0sSRMKlL-lJpa4225r_VBxcSRFc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558277327</pqid></control><display><type>article</type><title>Simplifying concentration-polarization of trace-ions in pressure-driven membrane processes</title><source>Free E- Journals</source><creator>Oren, Yaeli S ; Freger, Viatcheslav ; Nir, Oded</creator><creatorcontrib>Oren, Yaeli S ; Freger, Viatcheslav ; Nir, Oded</creatorcontrib><description>Accounting for concentration-polarization (CP) is critical for modeling solute transport in membrane separation processes. In a mixed-electrolyte solution, ions CP is affected not only by diffusion and advection but also by electromigration. Yet, the classic film model, lacking an electromigration term, is frequently used for modeling ion CP. Often, ion CP is altogether neglected to reduce the computational load. Here, we study the CP of trace ions in a dominant salt solution, a case relevant for many reverse-osmosis and nanofiltration processes. First, we revisit the solution-diffusion-electromigration-film theory to obtain an analytical solution for the CP and membrane-transport of trace-ions in a dominant salt solution. Secondly, we consider limiting conditions relevant to reverse-osmosis and nanofiltration, from which we derive two compact equations that emerge as a seamless extension to the classic film theory. These equations can be used to account for the effect of electromigration on CP with minimal effort. Thirdly, we use our theory to quantify the effect of electromigration on ion CP in different dominant salt solutions. Finally, by analyzing two environmental membrane processes, we demonstrate how our theory deviates from the conventional one and quantify the implications on membrane scaling potential and the transport of ionic contaminants.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Contaminants ; Electromigration ; Exact solutions ; Mathematical models ; Membrane processes ; Membrane separation ; Membranes ; Nanofiltration ; Osmosis ; Polarization ; Saline solutions</subject><ispartof>arXiv.org, 2021-08</ispartof><rights>2021. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Oren, Yaeli S</creatorcontrib><creatorcontrib>Freger, Viatcheslav</creatorcontrib><creatorcontrib>Nir, Oded</creatorcontrib><title>Simplifying concentration-polarization of trace-ions in pressure-driven membrane processes</title><title>arXiv.org</title><description>Accounting for concentration-polarization (CP) is critical for modeling solute transport in membrane separation processes. In a mixed-electrolyte solution, ions CP is affected not only by diffusion and advection but also by electromigration. Yet, the classic film model, lacking an electromigration term, is frequently used for modeling ion CP. Often, ion CP is altogether neglected to reduce the computational load. Here, we study the CP of trace ions in a dominant salt solution, a case relevant for many reverse-osmosis and nanofiltration processes. First, we revisit the solution-diffusion-electromigration-film theory to obtain an analytical solution for the CP and membrane-transport of trace-ions in a dominant salt solution. Secondly, we consider limiting conditions relevant to reverse-osmosis and nanofiltration, from which we derive two compact equations that emerge as a seamless extension to the classic film theory. These equations can be used to account for the effect of electromigration on CP with minimal effort. Thirdly, we use our theory to quantify the effect of electromigration on ion CP in different dominant salt solutions. Finally, by analyzing two environmental membrane processes, we demonstrate how our theory deviates from the conventional one and quantify the implications on membrane scaling potential and the transport of ionic contaminants.</description><subject>Contaminants</subject><subject>Electromigration</subject><subject>Exact solutions</subject><subject>Mathematical models</subject><subject>Membrane processes</subject><subject>Membrane separation</subject><subject>Membranes</subject><subject>Nanofiltration</subject><subject>Osmosis</subject><subject>Polarization</subject><subject>Saline solutions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjsEKwjAQRIMgWLT_EPAcqIk1vYviXU9eJMatpLSbutsK-vUG8QM8DW_eHGYiMm3MSlVrrWciZ26KotAbq8vSZOJ8DF3fhvoV8C59RA84kBtCRNXH1lF4f0HGWqbeg0rAMqDsCZhHAnWj8ASUHXRXcghJRJ8U8EJMa9cy5L-ci-V-d9oeVFo8RuDh0sSRMKlL-lJpa4225r_VBxcSRFc</recordid><startdate>20210803</startdate><enddate>20210803</enddate><creator>Oren, Yaeli S</creator><creator>Freger, Viatcheslav</creator><creator>Nir, Oded</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210803</creationdate><title>Simplifying concentration-polarization of trace-ions in pressure-driven membrane processes</title><author>Oren, Yaeli S ; Freger, Viatcheslav ; Nir, Oded</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_25582773273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Contaminants</topic><topic>Electromigration</topic><topic>Exact solutions</topic><topic>Mathematical models</topic><topic>Membrane processes</topic><topic>Membrane separation</topic><topic>Membranes</topic><topic>Nanofiltration</topic><topic>Osmosis</topic><topic>Polarization</topic><topic>Saline solutions</topic><toplevel>online_resources</toplevel><creatorcontrib>Oren, Yaeli S</creatorcontrib><creatorcontrib>Freger, Viatcheslav</creatorcontrib><creatorcontrib>Nir, Oded</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oren, Yaeli S</au><au>Freger, Viatcheslav</au><au>Nir, Oded</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Simplifying concentration-polarization of trace-ions in pressure-driven membrane processes</atitle><jtitle>arXiv.org</jtitle><date>2021-08-03</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Accounting for concentration-polarization (CP) is critical for modeling solute transport in membrane separation processes. In a mixed-electrolyte solution, ions CP is affected not only by diffusion and advection but also by electromigration. Yet, the classic film model, lacking an electromigration term, is frequently used for modeling ion CP. Often, ion CP is altogether neglected to reduce the computational load. Here, we study the CP of trace ions in a dominant salt solution, a case relevant for many reverse-osmosis and nanofiltration processes. First, we revisit the solution-diffusion-electromigration-film theory to obtain an analytical solution for the CP and membrane-transport of trace-ions in a dominant salt solution. Secondly, we consider limiting conditions relevant to reverse-osmosis and nanofiltration, from which we derive two compact equations that emerge as a seamless extension to the classic film theory. These equations can be used to account for the effect of electromigration on CP with minimal effort. Thirdly, we use our theory to quantify the effect of electromigration on ion CP in different dominant salt solutions. Finally, by analyzing two environmental membrane processes, we demonstrate how our theory deviates from the conventional one and quantify the implications on membrane scaling potential and the transport of ionic contaminants.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2558277327
source Free E- Journals
subjects Contaminants
Electromigration
Exact solutions
Mathematical models
Membrane processes
Membrane separation
Membranes
Nanofiltration
Osmosis
Polarization
Saline solutions
title Simplifying concentration-polarization of trace-ions in pressure-driven membrane processes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T18%3A07%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Simplifying%20concentration-polarization%20of%20trace-ions%20in%20pressure-driven%20membrane%20processes&rft.jtitle=arXiv.org&rft.au=Oren,%20Yaeli%20S&rft.date=2021-08-03&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2558277327%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558277327&rft_id=info:pmid/&rfr_iscdi=true