Respiratory droplets interception in fibrous porous media

We investigate, by means of pore-scale lattice Boltzmann simulations, the mechanisms of interception of respiratory droplets within fibrous porous media composing face masks. We simulate the dynamics, coalescence, and collection of droplets of the size comparable with the fiber and pore size in typi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of Fluids 2021-08, Vol.33 (8), p.83305-083305
Hauptverfasser: Maggiolo, Dario, Sasic, Srdjan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 083305
container_issue 8
container_start_page 83305
container_title Physics of Fluids
container_volume 33
creator Maggiolo, Dario
Sasic, Srdjan
description We investigate, by means of pore-scale lattice Boltzmann simulations, the mechanisms of interception of respiratory droplets within fibrous porous media composing face masks. We simulate the dynamics, coalescence, and collection of droplets of the size comparable with the fiber and pore size in typical fluid-dynamic conditions that represent common expiratory events. We discern the fibrous microstructure into three categories of pores: small, large, and medium-sized pores, where we find that within the latter, the incoming droplets tend to be more likely intercepted. The size of the medium-sized pores relative to the fiber size is placed between the droplet-to-fiber size ratio and a porosity-dependent microstructural parameter L ϵ * = ϵ / ( 1 − ϵ ), with ϵ being the porosity. In larger pores, droplets collection is instead inhibited by the small pore-throat-to-fiber size ratio that characterizes the pore perimeter, limiting their access. The efficiency of the fibrous media in intercepting droplets without compromising breathability, for a given droplet-to-fiber size ratio, can be estimated by knowing the parameter L ϵ *. We propose a simple model that predicts the average penetration of droplets into the fibrous media, showing a sublinear growth with L ϵ *. Permeability is shown also to scale well with L ϵ * but following a superlinear growth, which indicates the possibility of increasing the medium permeability at a little cost in terms of interception efficiency for high values of porosity. As a general design guideline, the results also suggest that a fibrous layer thickness relative to the fiber size should exceed the value L ϵ * in order to ensure effective droplets filtration.
doi_str_mv 10.1063/5.0060947
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2558243471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2568597013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-ef71db401f3d7f4563e784292289f5d89f644e634be1b03d02b640103e1230d53</originalsourceid><addsrcrecordid>eNp9kkuLFDEQgIMo7jp68B8MeFGh10oqr74Iy-ILFgQf55DuVDtZejpt0qPsvzftDMJ62EsqoT6-JFXF2HMOFxw0vlEXABpaaR6wcw62bYzW-uG6N9BojfyMPSnlBgCwFfoxO0MpDUc056z9QmWO2S8p325DTvNIS9nGaaHc07zENNXDdohdToeyndPfsKcQ_VP2aPBjoWenuGHf37_7dvWxuf784dPV5XXTK6uWhgbDQyeBDxjMIJVGMlaKVgjbDirURUtJGmVHvAMMIDpdaUDiAiEo3LCvR2_5TfOhc3OOe59vXfLRZSrkc79z_c6Pe8rFFXK23iu11Y7Qd05KNTgLpndGKC9tCFhz1fr2aK3K-p2epiX78Y78bmaKO_cj_XJWgkQrquDlSZDTzwOVxe1j6Wkc_US1Rk4obVVroJZ5w178h96kQ55q0VYKVSu1UPdTygqJa8827NWR6nMqJdPw78kc3DoMTrnTMFT29alyfVz82st74D9RbrAq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2563594625</pqid></control><display><type>article</type><title>Respiratory droplets interception in fibrous porous media</title><source>AIP Journals Complete</source><source>SWEPUB Freely available online</source><source>Alma/SFX Local Collection</source><creator>Maggiolo, Dario ; Sasic, Srdjan</creator><creatorcontrib>Maggiolo, Dario ; Sasic, Srdjan</creatorcontrib><description>We investigate, by means of pore-scale lattice Boltzmann simulations, the mechanisms of interception of respiratory droplets within fibrous porous media composing face masks. We simulate the dynamics, coalescence, and collection of droplets of the size comparable with the fiber and pore size in typical fluid-dynamic conditions that represent common expiratory events. We discern the fibrous microstructure into three categories of pores: small, large, and medium-sized pores, where we find that within the latter, the incoming droplets tend to be more likely intercepted. The size of the medium-sized pores relative to the fiber size is placed between the droplet-to-fiber size ratio and a porosity-dependent microstructural parameter L ϵ * = ϵ / ( 1 − ϵ ), with ϵ being the porosity. In larger pores, droplets collection is instead inhibited by the small pore-throat-to-fiber size ratio that characterizes the pore perimeter, limiting their access. The efficiency of the fibrous media in intercepting droplets without compromising breathability, for a given droplet-to-fiber size ratio, can be estimated by knowing the parameter L ϵ *. We propose a simple model that predicts the average penetration of droplets into the fibrous media, showing a sublinear growth with L ϵ *. Permeability is shown also to scale well with L ϵ * but following a superlinear growth, which indicates the possibility of increasing the medium permeability at a little cost in terms of interception efficiency for high values of porosity. As a general design guideline, the results also suggest that a fibrous layer thickness relative to the fiber size should exceed the value L ϵ * in order to ensure effective droplets filtration.</description><identifier>ISSN: 1070-6631</identifier><identifier>ISSN: 1089-7666</identifier><identifier>EISSN: 1089-7666</identifier><identifier>EISSN: 1070-6631</identifier><identifier>DOI: 10.1063/5.0060947</identifier><identifier>PMID: 34471337</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Coalescing ; Droplets ; Fluid dynamics ; Interception ; Microstructure ; Parameter estimation ; Permeability ; Physics ; Pore size ; Porosity ; Porous media ; Thickness</subject><ispartof>Physics of Fluids, 2021-08, Vol.33 (8), p.83305-083305</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><rights>Copyright American Institute of Physics Aug 5, 2021</rights><rights>2021 Author(s). 2021 Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-ef71db401f3d7f4563e784292289f5d89f644e634be1b03d02b640103e1230d53</citedby><cites>FETCH-LOGICAL-c585t-ef71db401f3d7f4563e784292289f5d89f644e634be1b03d02b640103e1230d53</cites><orcidid>0000-0001-5287-1981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,552,780,784,794,885,4510,27922,27923</link.rule.ids><backlink>$$Uhttps://research.chalmers.se/publication/525551$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Maggiolo, Dario</creatorcontrib><creatorcontrib>Sasic, Srdjan</creatorcontrib><title>Respiratory droplets interception in fibrous porous media</title><title>Physics of Fluids</title><description>We investigate, by means of pore-scale lattice Boltzmann simulations, the mechanisms of interception of respiratory droplets within fibrous porous media composing face masks. We simulate the dynamics, coalescence, and collection of droplets of the size comparable with the fiber and pore size in typical fluid-dynamic conditions that represent common expiratory events. We discern the fibrous microstructure into three categories of pores: small, large, and medium-sized pores, where we find that within the latter, the incoming droplets tend to be more likely intercepted. The size of the medium-sized pores relative to the fiber size is placed between the droplet-to-fiber size ratio and a porosity-dependent microstructural parameter L ϵ * = ϵ / ( 1 − ϵ ), with ϵ being the porosity. In larger pores, droplets collection is instead inhibited by the small pore-throat-to-fiber size ratio that characterizes the pore perimeter, limiting their access. The efficiency of the fibrous media in intercepting droplets without compromising breathability, for a given droplet-to-fiber size ratio, can be estimated by knowing the parameter L ϵ *. We propose a simple model that predicts the average penetration of droplets into the fibrous media, showing a sublinear growth with L ϵ *. Permeability is shown also to scale well with L ϵ * but following a superlinear growth, which indicates the possibility of increasing the medium permeability at a little cost in terms of interception efficiency for high values of porosity. As a general design guideline, the results also suggest that a fibrous layer thickness relative to the fiber size should exceed the value L ϵ * in order to ensure effective droplets filtration.</description><subject>Coalescing</subject><subject>Droplets</subject><subject>Fluid dynamics</subject><subject>Interception</subject><subject>Microstructure</subject><subject>Parameter estimation</subject><subject>Permeability</subject><subject>Physics</subject><subject>Pore size</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Thickness</subject><issn>1070-6631</issn><issn>1089-7666</issn><issn>1089-7666</issn><issn>1070-6631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>D8T</sourceid><recordid>eNp9kkuLFDEQgIMo7jp68B8MeFGh10oqr74Iy-ILFgQf55DuVDtZejpt0qPsvzftDMJ62EsqoT6-JFXF2HMOFxw0vlEXABpaaR6wcw62bYzW-uG6N9BojfyMPSnlBgCwFfoxO0MpDUc056z9QmWO2S8p325DTvNIS9nGaaHc07zENNXDdohdToeyndPfsKcQ_VP2aPBjoWenuGHf37_7dvWxuf784dPV5XXTK6uWhgbDQyeBDxjMIJVGMlaKVgjbDirURUtJGmVHvAMMIDpdaUDiAiEo3LCvR2_5TfOhc3OOe59vXfLRZSrkc79z_c6Pe8rFFXK23iu11Y7Qd05KNTgLpndGKC9tCFhz1fr2aK3K-p2epiX78Y78bmaKO_cj_XJWgkQrquDlSZDTzwOVxe1j6Wkc_US1Rk4obVVroJZ5w178h96kQ55q0VYKVSu1UPdTygqJa8827NWR6nMqJdPw78kc3DoMTrnTMFT29alyfVz82st74D9RbrAq</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Maggiolo, Dario</creator><creator>Sasic, Srdjan</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>COVID</scope><scope>7X8</scope><scope>5PM</scope><scope>ABBSD</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>F1S</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0001-5287-1981</orcidid></search><sort><creationdate>20210801</creationdate><title>Respiratory droplets interception in fibrous porous media</title><author>Maggiolo, Dario ; Sasic, Srdjan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-ef71db401f3d7f4563e784292289f5d89f644e634be1b03d02b640103e1230d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coalescing</topic><topic>Droplets</topic><topic>Fluid dynamics</topic><topic>Interception</topic><topic>Microstructure</topic><topic>Parameter estimation</topic><topic>Permeability</topic><topic>Physics</topic><topic>Pore size</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maggiolo, Dario</creatorcontrib><creatorcontrib>Sasic, Srdjan</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Coronavirus Research Database</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Chalmers tekniska högskola full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Chalmers tekniska högskola</collection><collection>SwePub Articles full text</collection><jtitle>Physics of Fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maggiolo, Dario</au><au>Sasic, Srdjan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Respiratory droplets interception in fibrous porous media</atitle><jtitle>Physics of Fluids</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>33</volume><issue>8</issue><spage>83305</spage><epage>083305</epage><pages>83305-083305</pages><issn>1070-6631</issn><issn>1089-7666</issn><eissn>1089-7666</eissn><eissn>1070-6631</eissn><coden>PHFLE6</coden><abstract>We investigate, by means of pore-scale lattice Boltzmann simulations, the mechanisms of interception of respiratory droplets within fibrous porous media composing face masks. We simulate the dynamics, coalescence, and collection of droplets of the size comparable with the fiber and pore size in typical fluid-dynamic conditions that represent common expiratory events. We discern the fibrous microstructure into three categories of pores: small, large, and medium-sized pores, where we find that within the latter, the incoming droplets tend to be more likely intercepted. The size of the medium-sized pores relative to the fiber size is placed between the droplet-to-fiber size ratio and a porosity-dependent microstructural parameter L ϵ * = ϵ / ( 1 − ϵ ), with ϵ being the porosity. In larger pores, droplets collection is instead inhibited by the small pore-throat-to-fiber size ratio that characterizes the pore perimeter, limiting their access. The efficiency of the fibrous media in intercepting droplets without compromising breathability, for a given droplet-to-fiber size ratio, can be estimated by knowing the parameter L ϵ *. We propose a simple model that predicts the average penetration of droplets into the fibrous media, showing a sublinear growth with L ϵ *. Permeability is shown also to scale well with L ϵ * but following a superlinear growth, which indicates the possibility of increasing the medium permeability at a little cost in terms of interception efficiency for high values of porosity. As a general design guideline, the results also suggest that a fibrous layer thickness relative to the fiber size should exceed the value L ϵ * in order to ensure effective droplets filtration.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><pmid>34471337</pmid><doi>10.1063/5.0060947</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5287-1981</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of Fluids, 2021-08, Vol.33 (8), p.83305-083305
issn 1070-6631
1089-7666
1089-7666
1070-6631
language eng
recordid cdi_proquest_journals_2558243471
source AIP Journals Complete; SWEPUB Freely available online; Alma/SFX Local Collection
subjects Coalescing
Droplets
Fluid dynamics
Interception
Microstructure
Parameter estimation
Permeability
Physics
Pore size
Porosity
Porous media
Thickness
title Respiratory droplets interception in fibrous porous media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Respiratory%20droplets%20interception%20in%20fibrous%20porous%20media&rft.jtitle=Physics%20of%20Fluids&rft.au=Maggiolo,%20Dario&rft.date=2021-08-01&rft.volume=33&rft.issue=8&rft.spage=83305&rft.epage=083305&rft.pages=83305-083305&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0060947&rft_dat=%3Cproquest_scita%3E2568597013%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2563594625&rft_id=info:pmid/34471337&rfr_iscdi=true