Targeting the genetic landscape of oral potentially malignant disorders has the potential as a preventative strategy in oral cancer

This study reviews the molecular landscape of oral potentially malignant disorders (OPMD). We examine the impact of tumour heterogeneity, the spectrum of driver mutations (TP53, CDKN2A, TERT, NOTCH1, AJUBA, PIK3CA, CASP8) and gene transcription on tumour progression. We comment on how some of these...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer letters 2021-10, Vol.518, p.102-114
Hauptverfasser: Prime, S.S., Cirillo, N., Cheong, S.C., Prime, M.S., Parkinson, E.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 114
container_issue
container_start_page 102
container_title Cancer letters
container_volume 518
creator Prime, S.S.
Cirillo, N.
Cheong, S.C.
Prime, M.S.
Parkinson, E.K.
description This study reviews the molecular landscape of oral potentially malignant disorders (OPMD). We examine the impact of tumour heterogeneity, the spectrum of driver mutations (TP53, CDKN2A, TERT, NOTCH1, AJUBA, PIK3CA, CASP8) and gene transcription on tumour progression. We comment on how some of these mutations impact cellular senescence, field cancerization and cancer stem cells. We propose that OPMD can be monitored more closely and more dynamically through the use of liquid biopsies using an appropriate biomarker of transformation. We describe new gene interactions through the use of a systems biology approach and we highlight some of the first studies to identify functional genes using CRISPR-Cas9 technology. We believe that this information has translational implications for the use of re-purposed existing drugs and/or new drug development. Further, we argue that the use of digital technology encompassing clinical and laboratory-based data will create relevant datasets for machine learning/artificial intelligence. We believe that therapeutic intervention at an early molecular premalignant stage should be an important preventative strategy to inhibit the development of oral squamous cell carcinoma and that this approach is applicable to other aerodigestive tract cancers. •Oral epithelial tumour progression is influenced by tumour heterogeneity, the spectrum of driver mutations and gene transcription.•Driver mutations in OPMD can be used to predict malignant transformation.•OPMD can be monitored dynamically using liquid biopsies and the loss of cellular senescence as a biomarker of transformation.•An interactome of genes with driver mutations is reported for the first time.•The identification of functional genes using CRISPR/Cas9 has translational implications.
doi_str_mv 10.1016/j.canlet.2021.05.025
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2558081066</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304383521002494</els_id><sourcerecordid>2558081066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-f7e5ede89aafecfc6766bde9bda9b1661df4f45a204c0b768f2fcf0b76797aef3</originalsourceid><addsrcrecordid>eNp9kE9v1DAQxS0EotvCN0DIEueEcRI7yQUJVUCRKnEpZ2tij1OvskmwvSvtmS-Ol5QeOc0fvXmj92PsnYBSgFAf96XBeaJUVlCJEmQJlXzBdqJrq6LtO3jJdlBDU9RdLa_YdYx7AJBNK1-zq7oRdV91asd-P2AYKfl55OmR-EhzHgyfcLbR4Ep8cXwJOPF1STQnj9N05gec_DjjnLj1cQmWQuSPGP86POt4XiBfA53yjMmfiMcUMNF45n7eTHMCQ-ENe-VwivT2qd6wn1-_PNzeFfc_vn2__XxfmLqHVLiWJFnqekRHxhnVKjVY6geL_SCUEtY1rpFYQWNgaFXnKmfcpWv7FsnVN-zD5ruG5deRYtL75Rjm_FJXUnbQCVAqq5pNZcISYyCn1-APGM5agL6Q13u9kdcX8hqkzuTz2fsn8-NwIPt89A91FnzaBJQjnjwFHY2nnN_6QCZpu_j_f_gDy_2ajg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558081066</pqid></control><display><type>article</type><title>Targeting the genetic landscape of oral potentially malignant disorders has the potential as a preventative strategy in oral cancer</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Prime, S.S. ; Cirillo, N. ; Cheong, S.C. ; Prime, M.S. ; Parkinson, E.K.</creator><creatorcontrib>Prime, S.S. ; Cirillo, N. ; Cheong, S.C. ; Prime, M.S. ; Parkinson, E.K.</creatorcontrib><description>This study reviews the molecular landscape of oral potentially malignant disorders (OPMD). We examine the impact of tumour heterogeneity, the spectrum of driver mutations (TP53, CDKN2A, TERT, NOTCH1, AJUBA, PIK3CA, CASP8) and gene transcription on tumour progression. We comment on how some of these mutations impact cellular senescence, field cancerization and cancer stem cells. We propose that OPMD can be monitored more closely and more dynamically through the use of liquid biopsies using an appropriate biomarker of transformation. We describe new gene interactions through the use of a systems biology approach and we highlight some of the first studies to identify functional genes using CRISPR-Cas9 technology. We believe that this information has translational implications for the use of re-purposed existing drugs and/or new drug development. Further, we argue that the use of digital technology encompassing clinical and laboratory-based data will create relevant datasets for machine learning/artificial intelligence. We believe that therapeutic intervention at an early molecular premalignant stage should be an important preventative strategy to inhibit the development of oral squamous cell carcinoma and that this approach is applicable to other aerodigestive tract cancers. •Oral epithelial tumour progression is influenced by tumour heterogeneity, the spectrum of driver mutations and gene transcription.•Driver mutations in OPMD can be used to predict malignant transformation.•OPMD can be monitored dynamically using liquid biopsies and the loss of cellular senescence as a biomarker of transformation.•An interactome of genes with driver mutations is reported for the first time.•The identification of functional genes using CRISPR/Cas9 has translational implications.</description><identifier>ISSN: 0304-3835</identifier><identifier>EISSN: 1872-7980</identifier><identifier>DOI: 10.1016/j.canlet.2021.05.025</identifier><identifier>PMID: 34139286</identifier><language>eng</language><publisher>Ireland: Elsevier B.V</publisher><subject>Animals ; Artificial Intelligence ; Biopsy ; Cancer ; Cell division ; Cellular Senescence - genetics ; Chromosomes ; CRISPR ; Drug development ; Genes ; Genetic transformation ; Genetics ; Genomes ; Humans ; Learning algorithms ; Machine Learning ; Mouth Neoplasms - genetics ; Mouth Neoplasms - pathology ; Mutation ; Neoplastic Stem Cells - pathology ; Notch1 protein ; Oral ; Oral cancer ; Oral squamous cell carcinoma ; p53 Protein ; Precancerous Conditions - genetics ; Precancerous Conditions - pathology ; Premalignancy ; Prevention ; Senescence ; Squamous cell carcinoma ; Squamous Cell Carcinoma of Head and Neck - genetics ; Squamous Cell Carcinoma of Head and Neck - pathology ; Stem cells ; Transcription ; Tumors</subject><ispartof>Cancer letters, 2021-10, Vol.518, p.102-114</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright © 2021 Elsevier B.V. All rights reserved.</rights><rights>2021. Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-f7e5ede89aafecfc6766bde9bda9b1661df4f45a204c0b768f2fcf0b76797aef3</citedby><cites>FETCH-LOGICAL-c390t-f7e5ede89aafecfc6766bde9bda9b1661df4f45a204c0b768f2fcf0b76797aef3</cites><orcidid>0000-0001-8717-0130 ; 0000-0001-6067-1373 ; 0000-0003-1429-1323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.canlet.2021.05.025$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34139286$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prime, S.S.</creatorcontrib><creatorcontrib>Cirillo, N.</creatorcontrib><creatorcontrib>Cheong, S.C.</creatorcontrib><creatorcontrib>Prime, M.S.</creatorcontrib><creatorcontrib>Parkinson, E.K.</creatorcontrib><title>Targeting the genetic landscape of oral potentially malignant disorders has the potential as a preventative strategy in oral cancer</title><title>Cancer letters</title><addtitle>Cancer Lett</addtitle><description>This study reviews the molecular landscape of oral potentially malignant disorders (OPMD). We examine the impact of tumour heterogeneity, the spectrum of driver mutations (TP53, CDKN2A, TERT, NOTCH1, AJUBA, PIK3CA, CASP8) and gene transcription on tumour progression. We comment on how some of these mutations impact cellular senescence, field cancerization and cancer stem cells. We propose that OPMD can be monitored more closely and more dynamically through the use of liquid biopsies using an appropriate biomarker of transformation. We describe new gene interactions through the use of a systems biology approach and we highlight some of the first studies to identify functional genes using CRISPR-Cas9 technology. We believe that this information has translational implications for the use of re-purposed existing drugs and/or new drug development. Further, we argue that the use of digital technology encompassing clinical and laboratory-based data will create relevant datasets for machine learning/artificial intelligence. We believe that therapeutic intervention at an early molecular premalignant stage should be an important preventative strategy to inhibit the development of oral squamous cell carcinoma and that this approach is applicable to other aerodigestive tract cancers. •Oral epithelial tumour progression is influenced by tumour heterogeneity, the spectrum of driver mutations and gene transcription.•Driver mutations in OPMD can be used to predict malignant transformation.•OPMD can be monitored dynamically using liquid biopsies and the loss of cellular senescence as a biomarker of transformation.•An interactome of genes with driver mutations is reported for the first time.•The identification of functional genes using CRISPR/Cas9 has translational implications.</description><subject>Animals</subject><subject>Artificial Intelligence</subject><subject>Biopsy</subject><subject>Cancer</subject><subject>Cell division</subject><subject>Cellular Senescence - genetics</subject><subject>Chromosomes</subject><subject>CRISPR</subject><subject>Drug development</subject><subject>Genes</subject><subject>Genetic transformation</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Humans</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Mouth Neoplasms - genetics</subject><subject>Mouth Neoplasms - pathology</subject><subject>Mutation</subject><subject>Neoplastic Stem Cells - pathology</subject><subject>Notch1 protein</subject><subject>Oral</subject><subject>Oral cancer</subject><subject>Oral squamous cell carcinoma</subject><subject>p53 Protein</subject><subject>Precancerous Conditions - genetics</subject><subject>Precancerous Conditions - pathology</subject><subject>Premalignancy</subject><subject>Prevention</subject><subject>Senescence</subject><subject>Squamous cell carcinoma</subject><subject>Squamous Cell Carcinoma of Head and Neck - genetics</subject><subject>Squamous Cell Carcinoma of Head and Neck - pathology</subject><subject>Stem cells</subject><subject>Transcription</subject><subject>Tumors</subject><issn>0304-3835</issn><issn>1872-7980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9v1DAQxS0EotvCN0DIEueEcRI7yQUJVUCRKnEpZ2tij1OvskmwvSvtmS-Ol5QeOc0fvXmj92PsnYBSgFAf96XBeaJUVlCJEmQJlXzBdqJrq6LtO3jJdlBDU9RdLa_YdYx7AJBNK1-zq7oRdV91asd-P2AYKfl55OmR-EhzHgyfcLbR4Ep8cXwJOPF1STQnj9N05gec_DjjnLj1cQmWQuSPGP86POt4XiBfA53yjMmfiMcUMNF45n7eTHMCQ-ENe-VwivT2qd6wn1-_PNzeFfc_vn2__XxfmLqHVLiWJFnqekRHxhnVKjVY6geL_SCUEtY1rpFYQWNgaFXnKmfcpWv7FsnVN-zD5ruG5deRYtL75Rjm_FJXUnbQCVAqq5pNZcISYyCn1-APGM5agL6Q13u9kdcX8hqkzuTz2fsn8-NwIPt89A91FnzaBJQjnjwFHY2nnN_6QCZpu_j_f_gDy_2ajg</recordid><startdate>20211010</startdate><enddate>20211010</enddate><creator>Prime, S.S.</creator><creator>Cirillo, N.</creator><creator>Cheong, S.C.</creator><creator>Prime, M.S.</creator><creator>Parkinson, E.K.</creator><general>Elsevier B.V</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TO</scope><scope>7U9</scope><scope>H94</scope><scope>K9.</scope><scope>NAPCQ</scope><orcidid>https://orcid.org/0000-0001-8717-0130</orcidid><orcidid>https://orcid.org/0000-0001-6067-1373</orcidid><orcidid>https://orcid.org/0000-0003-1429-1323</orcidid></search><sort><creationdate>20211010</creationdate><title>Targeting the genetic landscape of oral potentially malignant disorders has the potential as a preventative strategy in oral cancer</title><author>Prime, S.S. ; Cirillo, N. ; Cheong, S.C. ; Prime, M.S. ; Parkinson, E.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-f7e5ede89aafecfc6766bde9bda9b1661df4f45a204c0b768f2fcf0b76797aef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Artificial Intelligence</topic><topic>Biopsy</topic><topic>Cancer</topic><topic>Cell division</topic><topic>Cellular Senescence - genetics</topic><topic>Chromosomes</topic><topic>CRISPR</topic><topic>Drug development</topic><topic>Genes</topic><topic>Genetic transformation</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Humans</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Mouth Neoplasms - genetics</topic><topic>Mouth Neoplasms - pathology</topic><topic>Mutation</topic><topic>Neoplastic Stem Cells - pathology</topic><topic>Notch1 protein</topic><topic>Oral</topic><topic>Oral cancer</topic><topic>Oral squamous cell carcinoma</topic><topic>p53 Protein</topic><topic>Precancerous Conditions - genetics</topic><topic>Precancerous Conditions - pathology</topic><topic>Premalignancy</topic><topic>Prevention</topic><topic>Senescence</topic><topic>Squamous cell carcinoma</topic><topic>Squamous Cell Carcinoma of Head and Neck - genetics</topic><topic>Squamous Cell Carcinoma of Head and Neck - pathology</topic><topic>Stem cells</topic><topic>Transcription</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prime, S.S.</creatorcontrib><creatorcontrib>Cirillo, N.</creatorcontrib><creatorcontrib>Cheong, S.C.</creatorcontrib><creatorcontrib>Prime, M.S.</creatorcontrib><creatorcontrib>Parkinson, E.K.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><jtitle>Cancer letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prime, S.S.</au><au>Cirillo, N.</au><au>Cheong, S.C.</au><au>Prime, M.S.</au><au>Parkinson, E.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Targeting the genetic landscape of oral potentially malignant disorders has the potential as a preventative strategy in oral cancer</atitle><jtitle>Cancer letters</jtitle><addtitle>Cancer Lett</addtitle><date>2021-10-10</date><risdate>2021</risdate><volume>518</volume><spage>102</spage><epage>114</epage><pages>102-114</pages><issn>0304-3835</issn><eissn>1872-7980</eissn><abstract>This study reviews the molecular landscape of oral potentially malignant disorders (OPMD). We examine the impact of tumour heterogeneity, the spectrum of driver mutations (TP53, CDKN2A, TERT, NOTCH1, AJUBA, PIK3CA, CASP8) and gene transcription on tumour progression. We comment on how some of these mutations impact cellular senescence, field cancerization and cancer stem cells. We propose that OPMD can be monitored more closely and more dynamically through the use of liquid biopsies using an appropriate biomarker of transformation. We describe new gene interactions through the use of a systems biology approach and we highlight some of the first studies to identify functional genes using CRISPR-Cas9 technology. We believe that this information has translational implications for the use of re-purposed existing drugs and/or new drug development. Further, we argue that the use of digital technology encompassing clinical and laboratory-based data will create relevant datasets for machine learning/artificial intelligence. We believe that therapeutic intervention at an early molecular premalignant stage should be an important preventative strategy to inhibit the development of oral squamous cell carcinoma and that this approach is applicable to other aerodigestive tract cancers. •Oral epithelial tumour progression is influenced by tumour heterogeneity, the spectrum of driver mutations and gene transcription.•Driver mutations in OPMD can be used to predict malignant transformation.•OPMD can be monitored dynamically using liquid biopsies and the loss of cellular senescence as a biomarker of transformation.•An interactome of genes with driver mutations is reported for the first time.•The identification of functional genes using CRISPR/Cas9 has translational implications.</abstract><cop>Ireland</cop><pub>Elsevier B.V</pub><pmid>34139286</pmid><doi>10.1016/j.canlet.2021.05.025</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8717-0130</orcidid><orcidid>https://orcid.org/0000-0001-6067-1373</orcidid><orcidid>https://orcid.org/0000-0003-1429-1323</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0304-3835
ispartof Cancer letters, 2021-10, Vol.518, p.102-114
issn 0304-3835
1872-7980
language eng
recordid cdi_proquest_journals_2558081066
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Animals
Artificial Intelligence
Biopsy
Cancer
Cell division
Cellular Senescence - genetics
Chromosomes
CRISPR
Drug development
Genes
Genetic transformation
Genetics
Genomes
Humans
Learning algorithms
Machine Learning
Mouth Neoplasms - genetics
Mouth Neoplasms - pathology
Mutation
Neoplastic Stem Cells - pathology
Notch1 protein
Oral
Oral cancer
Oral squamous cell carcinoma
p53 Protein
Precancerous Conditions - genetics
Precancerous Conditions - pathology
Premalignancy
Prevention
Senescence
Squamous cell carcinoma
Squamous Cell Carcinoma of Head and Neck - genetics
Squamous Cell Carcinoma of Head and Neck - pathology
Stem cells
Transcription
Tumors
title Targeting the genetic landscape of oral potentially malignant disorders has the potential as a preventative strategy in oral cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A28%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Targeting%20the%20genetic%20landscape%20of%20oral%20potentially%20malignant%20disorders%20has%20the%20potential%20as%20a%20preventative%20strategy%20in%20oral%20cancer&rft.jtitle=Cancer%20letters&rft.au=Prime,%20S.S.&rft.date=2021-10-10&rft.volume=518&rft.spage=102&rft.epage=114&rft.pages=102-114&rft.issn=0304-3835&rft.eissn=1872-7980&rft_id=info:doi/10.1016/j.canlet.2021.05.025&rft_dat=%3Cproquest_cross%3E2558081066%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558081066&rft_id=info:pmid/34139286&rft_els_id=S0304383521002494&rfr_iscdi=true