Application of Discrete Fracture Network Model in the Simulation of Massive Fracturing in Tight Oil Reservoir
Massive fracturing technology can form a complex fracture network and a large drainage area by multi-stage/multi-cluster perforation and injection of low viscosity fluids such as silckwater.the traditional bi-wing planar model is not applicable in the simulation of massive fracturing, and a new netw...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Earth and environmental science 2019-12, Vol.358 (4), p.42028 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 42028 |
container_title | IOP conference series. Earth and environmental science |
container_volume | 358 |
creator | Ming, He Chun Zhi, Shi San Zhanghui Shuai, Li Jin, Chen Ning, Cheng Duanguifu |
description | Massive fracturing technology can form a complex fracture network and a large drainage area by multi-stage/multi-cluster perforation and injection of low viscosity fluids such as silckwater.the traditional bi-wing planar model is not applicable in the simulation of massive fracturing, and a new network model is needed. The pseudo-three-dimension (P3D) Discrete Fracture Network (DFN) model are based on self-similar solution methodology, and the fracture characteristics are then calculated numerically. we performed a comparison between DFN model and Cluster Facture model through the integration of rock mechanics, well logging and micro seismic detection technology. After the mini-fracture analysis and closure analysis, parameters like instantaneous shut-in pressure (ISIP), closure pressure and reservoir permeability were obtained. Based on these parameters, pressure history match and SRV match were performed, the result shows that DFN model works better than the Cluster Fracture model in the matching. The research proves the feasibility of DFN model in the simulation of massive fracturing in tight oil reservoirs. |
doi_str_mv | 10.1088/1755-1315/358/4/042028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2558056974</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558056974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-7956bda2e1e32f3282c142575c2c57484d62071096a35354fbb1fd605764a72b3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFb_gix48RKzn9nkWGqrQmvB1vOSj027Nc3G3aTivzchEhEETzMw7zPDPABcY3SHURj6WHDuYYq5T3noMx8xgkh4AkbD4HTokTgHF87tEQoEo9EIHCZVVeg0rrUpocnhvXapVbWCcxundWMVfFb1h7FvcGkyVUBdwnqn4FofmmKAlrFz-jgwutx2uY3e7mq40gV8UU7Zo9H2EpzlceHU1Xcdg9f5bDN99Barh6fpZOGlNMK1JyIeJFlMFFaU5JSEJMWMcMFTknLBQpYFBAmMoiCmnHKWJwnOswBxEbBYkISOwU2_t7LmvVGulnvT2LI9KQnnIeJB1L4_BkGfSq1xzqpcVlYfYvspMZKdWtlZk51B2aqVTPZqW5D0oDbVz-Z_ods_oNls_SsmqyynX5Nfhzg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558056974</pqid></control><display><type>article</type><title>Application of Discrete Fracture Network Model in the Simulation of Massive Fracturing in Tight Oil Reservoir</title><source>IOP Publishing Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>IOPscience extra</source><creator>Ming, He Chun ; Zhi, Shi San ; Zhanghui ; Shuai, Li ; Jin, Chen ; Ning, Cheng ; Duanguifu</creator><creatorcontrib>Ming, He Chun ; Zhi, Shi San ; Zhanghui ; Shuai, Li ; Jin, Chen ; Ning, Cheng ; Duanguifu</creatorcontrib><description>Massive fracturing technology can form a complex fracture network and a large drainage area by multi-stage/multi-cluster perforation and injection of low viscosity fluids such as silckwater.the traditional bi-wing planar model is not applicable in the simulation of massive fracturing, and a new network model is needed. The pseudo-three-dimension (P3D) Discrete Fracture Network (DFN) model are based on self-similar solution methodology, and the fracture characteristics are then calculated numerically. we performed a comparison between DFN model and Cluster Facture model through the integration of rock mechanics, well logging and micro seismic detection technology. After the mini-fracture analysis and closure analysis, parameters like instantaneous shut-in pressure (ISIP), closure pressure and reservoir permeability were obtained. Based on these parameters, pressure history match and SRV match were performed, the result shows that DFN model works better than the Cluster Fracture model in the matching. The research proves the feasibility of DFN model in the simulation of massive fracturing in tight oil reservoirs.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/358/4/042028</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Clusters ; Computational fluid dynamics ; Drainage area ; Fracture mechanics ; Mathematical models ; Oil reservoirs ; Parameters ; Permeability ; Pressure ; Reservoirs ; Rock mechanics ; Self-similarity ; Simulation ; Technology assessment</subject><ispartof>IOP conference series. Earth and environmental science, 2019-12, Vol.358 (4), p.42028</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/358/4/042028/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Ming, He Chun</creatorcontrib><creatorcontrib>Zhi, Shi San</creatorcontrib><creatorcontrib>Zhanghui</creatorcontrib><creatorcontrib>Shuai, Li</creatorcontrib><creatorcontrib>Jin, Chen</creatorcontrib><creatorcontrib>Ning, Cheng</creatorcontrib><creatorcontrib>Duanguifu</creatorcontrib><title>Application of Discrete Fracture Network Model in the Simulation of Massive Fracturing in Tight Oil Reservoir</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>Massive fracturing technology can form a complex fracture network and a large drainage area by multi-stage/multi-cluster perforation and injection of low viscosity fluids such as silckwater.the traditional bi-wing planar model is not applicable in the simulation of massive fracturing, and a new network model is needed. The pseudo-three-dimension (P3D) Discrete Fracture Network (DFN) model are based on self-similar solution methodology, and the fracture characteristics are then calculated numerically. we performed a comparison between DFN model and Cluster Facture model through the integration of rock mechanics, well logging and micro seismic detection technology. After the mini-fracture analysis and closure analysis, parameters like instantaneous shut-in pressure (ISIP), closure pressure and reservoir permeability were obtained. Based on these parameters, pressure history match and SRV match were performed, the result shows that DFN model works better than the Cluster Fracture model in the matching. The research proves the feasibility of DFN model in the simulation of massive fracturing in tight oil reservoirs.</description><subject>Clusters</subject><subject>Computational fluid dynamics</subject><subject>Drainage area</subject><subject>Fracture mechanics</subject><subject>Mathematical models</subject><subject>Oil reservoirs</subject><subject>Parameters</subject><subject>Permeability</subject><subject>Pressure</subject><subject>Reservoirs</subject><subject>Rock mechanics</subject><subject>Self-similarity</subject><subject>Simulation</subject><subject>Technology assessment</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkE1Lw0AQhhdRsFb_gix48RKzn9nkWGqrQmvB1vOSj027Nc3G3aTivzchEhEETzMw7zPDPABcY3SHURj6WHDuYYq5T3noMx8xgkh4AkbD4HTokTgHF87tEQoEo9EIHCZVVeg0rrUpocnhvXapVbWCcxundWMVfFb1h7FvcGkyVUBdwnqn4FofmmKAlrFz-jgwutx2uY3e7mq40gV8UU7Zo9H2EpzlceHU1Xcdg9f5bDN99Barh6fpZOGlNMK1JyIeJFlMFFaU5JSEJMWMcMFTknLBQpYFBAmMoiCmnHKWJwnOswBxEbBYkISOwU2_t7LmvVGulnvT2LI9KQnnIeJB1L4_BkGfSq1xzqpcVlYfYvspMZKdWtlZk51B2aqVTPZqW5D0oDbVz-Z_ods_oNls_SsmqyynX5Nfhzg</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Ming, He Chun</creator><creator>Zhi, Shi San</creator><creator>Zhanghui</creator><creator>Shuai, Li</creator><creator>Jin, Chen</creator><creator>Ning, Cheng</creator><creator>Duanguifu</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope></search><sort><creationdate>20191201</creationdate><title>Application of Discrete Fracture Network Model in the Simulation of Massive Fracturing in Tight Oil Reservoir</title><author>Ming, He Chun ; Zhi, Shi San ; Zhanghui ; Shuai, Li ; Jin, Chen ; Ning, Cheng ; Duanguifu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-7956bda2e1e32f3282c142575c2c57484d62071096a35354fbb1fd605764a72b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Clusters</topic><topic>Computational fluid dynamics</topic><topic>Drainage area</topic><topic>Fracture mechanics</topic><topic>Mathematical models</topic><topic>Oil reservoirs</topic><topic>Parameters</topic><topic>Permeability</topic><topic>Pressure</topic><topic>Reservoirs</topic><topic>Rock mechanics</topic><topic>Self-similarity</topic><topic>Simulation</topic><topic>Technology assessment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ming, He Chun</creatorcontrib><creatorcontrib>Zhi, Shi San</creatorcontrib><creatorcontrib>Zhanghui</creatorcontrib><creatorcontrib>Shuai, Li</creatorcontrib><creatorcontrib>Jin, Chen</creatorcontrib><creatorcontrib>Ning, Cheng</creatorcontrib><creatorcontrib>Duanguifu</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ming, He Chun</au><au>Zhi, Shi San</au><au>Zhanghui</au><au>Shuai, Li</au><au>Jin, Chen</au><au>Ning, Cheng</au><au>Duanguifu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Discrete Fracture Network Model in the Simulation of Massive Fracturing in Tight Oil Reservoir</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>358</volume><issue>4</issue><spage>42028</spage><pages>42028-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Massive fracturing technology can form a complex fracture network and a large drainage area by multi-stage/multi-cluster perforation and injection of low viscosity fluids such as silckwater.the traditional bi-wing planar model is not applicable in the simulation of massive fracturing, and a new network model is needed. The pseudo-three-dimension (P3D) Discrete Fracture Network (DFN) model are based on self-similar solution methodology, and the fracture characteristics are then calculated numerically. we performed a comparison between DFN model and Cluster Facture model through the integration of rock mechanics, well logging and micro seismic detection technology. After the mini-fracture analysis and closure analysis, parameters like instantaneous shut-in pressure (ISIP), closure pressure and reservoir permeability were obtained. Based on these parameters, pressure history match and SRV match were performed, the result shows that DFN model works better than the Cluster Fracture model in the matching. The research proves the feasibility of DFN model in the simulation of massive fracturing in tight oil reservoirs.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/358/4/042028</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-1307 |
ispartof | IOP conference series. Earth and environmental science, 2019-12, Vol.358 (4), p.42028 |
issn | 1755-1307 1755-1315 |
language | eng |
recordid | cdi_proquest_journals_2558056974 |
source | IOP Publishing Free Content; EZB-FREE-00999 freely available EZB journals; IOPscience extra |
subjects | Clusters Computational fluid dynamics Drainage area Fracture mechanics Mathematical models Oil reservoirs Parameters Permeability Pressure Reservoirs Rock mechanics Self-similarity Simulation Technology assessment |
title | Application of Discrete Fracture Network Model in the Simulation of Massive Fracturing in Tight Oil Reservoir |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A58%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Discrete%20Fracture%20Network%20Model%20in%20the%20Simulation%20of%20Massive%20Fracturing%20in%20Tight%20Oil%20Reservoir&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Ming,%20He%20Chun&rft.date=2019-12-01&rft.volume=358&rft.issue=4&rft.spage=42028&rft.pages=42028-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/358/4/042028&rft_dat=%3Cproquest_iop_j%3E2558056974%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558056974&rft_id=info:pmid/&rfr_iscdi=true |