Skin lesion segmentation based on mask RCNN, Multi Atrous Full‐CNN, and a geodesic method
Automatic accurate skin lesion segmentation systems are very helpful for timely diagnosis and treatment of skin cancers. Recently, methods based on convolutional neural networks (CNN) have presented powerful performances and good results in biomedical applications. In the proposed method, a novel st...
Gespeichert in:
Veröffentlicht in: | International journal of imaging systems and technology 2021-09, Vol.31 (3), p.1609-1624 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1624 |
---|---|
container_issue | 3 |
container_start_page | 1609 |
container_title | International journal of imaging systems and technology |
container_volume | 31 |
creator | Bagheri, Fatemeh Tarokh, Mohammad Jafar Ziaratban, Majid |
description | Automatic accurate skin lesion segmentation systems are very helpful for timely diagnosis and treatment of skin cancers. Recently, methods based on convolutional neural networks (CNN) have presented powerful performances and good results in biomedical applications. In the proposed method, a novel structure based on Mask RCNN, a proposed CNN, and a geodesic segmentation method is presented to improve the performance of the skin lesion segmentation. Lesions are detected and segmented by the Mask R‐CNN in the first stage. A multi‐atrous full convolutional neural network (MAFCNN) is proposed to combine outputs of the Mask RCNN and the input image to present more accurate segmentation results. To modify boundary of the lesion segmented by the MAFCNN, a geodesic segmentation method is used. Some parts of the segmentation result of the proposed CNN are utilized as labeled pixels for the geodesic method. Results demonstrate that using the proposed MAFCNN in a novel structure followed by the geodesic method significantly improves the mean Jaccard value. Experiments on five well‐known skin image datasets show that the proposed method outperforms other state‐of‐the‐art methods. |
doi_str_mv | 10.1002/ima.22561 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2558034302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2558034302</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2971-5256af869031227fb4eee088e66279a273b7a4bab56cc41ddbd0268a5083b9173</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqWw4AaWWCGRduzEib2sKgqV2iLxWLGw7MQpafModiLUHUfgjJwEl7BlMw_NN_-MfoQuCYwIAB0XlRpRymJyhAYEBA8O4RgNgAsRiIglp-jMuQ0AIQzYAL0-bYsal8YVTY2dWVemblV7aLRyJsO-qJTb4sfpanWDl13ZFnjS2qZzeNaV5ffn1-9A1RlWeG2azCuluDLtW5Odo5Nclc5c_OUhepndPk_vg8XD3Xw6WQQpFQkJmH9X5TwWEBJKk1xHxhjg3MQxTYSiSagTFWmlWZymEckynQGNuWLAQy1IEg7RVa-7s817Z1wrN01na39SUsY4hFEI1FPXPZXaxjlrcrmz3i27lwTkwTvpO_nrnWfHPftRlGb_Pyjny0m_8QOnBG79</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2558034302</pqid></control><display><type>article</type><title>Skin lesion segmentation based on mask RCNN, Multi Atrous Full‐CNN, and a geodesic method</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bagheri, Fatemeh ; Tarokh, Mohammad Jafar ; Ziaratban, Majid</creator><creatorcontrib>Bagheri, Fatemeh ; Tarokh, Mohammad Jafar ; Ziaratban, Majid</creatorcontrib><description>Automatic accurate skin lesion segmentation systems are very helpful for timely diagnosis and treatment of skin cancers. Recently, methods based on convolutional neural networks (CNN) have presented powerful performances and good results in biomedical applications. In the proposed method, a novel structure based on Mask RCNN, a proposed CNN, and a geodesic segmentation method is presented to improve the performance of the skin lesion segmentation. Lesions are detected and segmented by the Mask R‐CNN in the first stage. A multi‐atrous full convolutional neural network (MAFCNN) is proposed to combine outputs of the Mask RCNN and the input image to present more accurate segmentation results. To modify boundary of the lesion segmented by the MAFCNN, a geodesic segmentation method is used. Some parts of the segmentation result of the proposed CNN are utilized as labeled pixels for the geodesic method. Results demonstrate that using the proposed MAFCNN in a novel structure followed by the geodesic method significantly improves the mean Jaccard value. Experiments on five well‐known skin image datasets show that the proposed method outperforms other state‐of‐the‐art methods.</description><identifier>ISSN: 0899-9457</identifier><identifier>EISSN: 1098-1098</identifier><identifier>DOI: 10.1002/ima.22561</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Artificial neural networks ; Biomedical materials ; geodesic ; Image segmentation ; MAFCNN ; Mask R‐CNN ; Medical imaging ; Neural networks ; semantic segmentation ; skin lesion</subject><ispartof>International journal of imaging systems and technology, 2021-09, Vol.31 (3), p.1609-1624</ispartof><rights>2021 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2971-5256af869031227fb4eee088e66279a273b7a4bab56cc41ddbd0268a5083b9173</citedby><cites>FETCH-LOGICAL-c2971-5256af869031227fb4eee088e66279a273b7a4bab56cc41ddbd0268a5083b9173</cites><orcidid>0000-0003-1491-1895 ; 0000-0002-5904-7722 ; 0000-0003-4560-4759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fima.22561$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fima.22561$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27913,27914,45563,45564</link.rule.ids></links><search><creatorcontrib>Bagheri, Fatemeh</creatorcontrib><creatorcontrib>Tarokh, Mohammad Jafar</creatorcontrib><creatorcontrib>Ziaratban, Majid</creatorcontrib><title>Skin lesion segmentation based on mask RCNN, Multi Atrous Full‐CNN, and a geodesic method</title><title>International journal of imaging systems and technology</title><description>Automatic accurate skin lesion segmentation systems are very helpful for timely diagnosis and treatment of skin cancers. Recently, methods based on convolutional neural networks (CNN) have presented powerful performances and good results in biomedical applications. In the proposed method, a novel structure based on Mask RCNN, a proposed CNN, and a geodesic segmentation method is presented to improve the performance of the skin lesion segmentation. Lesions are detected and segmented by the Mask R‐CNN in the first stage. A multi‐atrous full convolutional neural network (MAFCNN) is proposed to combine outputs of the Mask RCNN and the input image to present more accurate segmentation results. To modify boundary of the lesion segmented by the MAFCNN, a geodesic segmentation method is used. Some parts of the segmentation result of the proposed CNN are utilized as labeled pixels for the geodesic method. Results demonstrate that using the proposed MAFCNN in a novel structure followed by the geodesic method significantly improves the mean Jaccard value. Experiments on five well‐known skin image datasets show that the proposed method outperforms other state‐of‐the‐art methods.</description><subject>Artificial neural networks</subject><subject>Biomedical materials</subject><subject>geodesic</subject><subject>Image segmentation</subject><subject>MAFCNN</subject><subject>Mask R‐CNN</subject><subject>Medical imaging</subject><subject>Neural networks</subject><subject>semantic segmentation</subject><subject>skin lesion</subject><issn>0899-9457</issn><issn>1098-1098</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EEqWw4AaWWCGRduzEib2sKgqV2iLxWLGw7MQpafModiLUHUfgjJwEl7BlMw_NN_-MfoQuCYwIAB0XlRpRymJyhAYEBA8O4RgNgAsRiIglp-jMuQ0AIQzYAL0-bYsal8YVTY2dWVemblV7aLRyJsO-qJTb4sfpanWDl13ZFnjS2qZzeNaV5ffn1-9A1RlWeG2azCuluDLtW5Odo5Nclc5c_OUhepndPk_vg8XD3Xw6WQQpFQkJmH9X5TwWEBJKk1xHxhjg3MQxTYSiSagTFWmlWZymEckynQGNuWLAQy1IEg7RVa-7s817Z1wrN01na39SUsY4hFEI1FPXPZXaxjlrcrmz3i27lwTkwTvpO_nrnWfHPftRlGb_Pyjny0m_8QOnBG79</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Bagheri, Fatemeh</creator><creator>Tarokh, Mohammad Jafar</creator><creator>Ziaratban, Majid</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1491-1895</orcidid><orcidid>https://orcid.org/0000-0002-5904-7722</orcidid><orcidid>https://orcid.org/0000-0003-4560-4759</orcidid></search><sort><creationdate>202109</creationdate><title>Skin lesion segmentation based on mask RCNN, Multi Atrous Full‐CNN, and a geodesic method</title><author>Bagheri, Fatemeh ; Tarokh, Mohammad Jafar ; Ziaratban, Majid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2971-5256af869031227fb4eee088e66279a273b7a4bab56cc41ddbd0268a5083b9173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Artificial neural networks</topic><topic>Biomedical materials</topic><topic>geodesic</topic><topic>Image segmentation</topic><topic>MAFCNN</topic><topic>Mask R‐CNN</topic><topic>Medical imaging</topic><topic>Neural networks</topic><topic>semantic segmentation</topic><topic>skin lesion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagheri, Fatemeh</creatorcontrib><creatorcontrib>Tarokh, Mohammad Jafar</creatorcontrib><creatorcontrib>Ziaratban, Majid</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of imaging systems and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagheri, Fatemeh</au><au>Tarokh, Mohammad Jafar</au><au>Ziaratban, Majid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skin lesion segmentation based on mask RCNN, Multi Atrous Full‐CNN, and a geodesic method</atitle><jtitle>International journal of imaging systems and technology</jtitle><date>2021-09</date><risdate>2021</risdate><volume>31</volume><issue>3</issue><spage>1609</spage><epage>1624</epage><pages>1609-1624</pages><issn>0899-9457</issn><eissn>1098-1098</eissn><abstract>Automatic accurate skin lesion segmentation systems are very helpful for timely diagnosis and treatment of skin cancers. Recently, methods based on convolutional neural networks (CNN) have presented powerful performances and good results in biomedical applications. In the proposed method, a novel structure based on Mask RCNN, a proposed CNN, and a geodesic segmentation method is presented to improve the performance of the skin lesion segmentation. Lesions are detected and segmented by the Mask R‐CNN in the first stage. A multi‐atrous full convolutional neural network (MAFCNN) is proposed to combine outputs of the Mask RCNN and the input image to present more accurate segmentation results. To modify boundary of the lesion segmented by the MAFCNN, a geodesic segmentation method is used. Some parts of the segmentation result of the proposed CNN are utilized as labeled pixels for the geodesic method. Results demonstrate that using the proposed MAFCNN in a novel structure followed by the geodesic method significantly improves the mean Jaccard value. Experiments on five well‐known skin image datasets show that the proposed method outperforms other state‐of‐the‐art methods.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/ima.22561</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-1491-1895</orcidid><orcidid>https://orcid.org/0000-0002-5904-7722</orcidid><orcidid>https://orcid.org/0000-0003-4560-4759</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-9457 |
ispartof | International journal of imaging systems and technology, 2021-09, Vol.31 (3), p.1609-1624 |
issn | 0899-9457 1098-1098 |
language | eng |
recordid | cdi_proquest_journals_2558034302 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Artificial neural networks Biomedical materials geodesic Image segmentation MAFCNN Mask R‐CNN Medical imaging Neural networks semantic segmentation skin lesion |
title | Skin lesion segmentation based on mask RCNN, Multi Atrous Full‐CNN, and a geodesic method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skin%20lesion%20segmentation%20based%20on%20mask%20RCNN,%20Multi%20Atrous%20Full%E2%80%90CNN,%20and%20a%20geodesic%20method&rft.jtitle=International%20journal%20of%20imaging%20systems%20and%20technology&rft.au=Bagheri,%20Fatemeh&rft.date=2021-09&rft.volume=31&rft.issue=3&rft.spage=1609&rft.epage=1624&rft.pages=1609-1624&rft.issn=0899-9457&rft.eissn=1098-1098&rft_id=info:doi/10.1002/ima.22561&rft_dat=%3Cproquest_cross%3E2558034302%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2558034302&rft_id=info:pmid/&rfr_iscdi=true |