Resilient Design of Robust Multi-Objectives PID Controllers for Automatic Voltage Regulators: D-Decomposition Approach

Resilient design of robust multi-objectives PID controllers via the D-decomposition method is presented in this paper for automatic voltage regulators (AVRs). The stabilizing interval of derivative gain ( k_{d} ) is analytically calculated by the Routh-Hurwitz criterion. The k_{p}-k_{i} domain, fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2021, Vol.9, p.106589-106605
Hauptverfasser: Ali, Mahmoud N., Soliman, Mahmoud, Mahmoud, Karar, Guerrero, Josep M., Lehtonen, Matti, Darwish, Mohamed M. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 106605
container_issue
container_start_page 106589
container_title IEEE access
container_volume 9
creator Ali, Mahmoud N.
Soliman, Mahmoud
Mahmoud, Karar
Guerrero, Josep M.
Lehtonen, Matti
Darwish, Mohamed M. F.
description Resilient design of robust multi-objectives PID controllers via the D-decomposition method is presented in this paper for automatic voltage regulators (AVRs). The stabilizing interval of derivative gain ( k_{d} ) is analytically calculated by the Routh-Hurwitz criterion. The k_{p}-k_{i} domain, for a fixed value of k_{d} , is decomposed in root invariant regions by mapping the stability boundary from the complex plane. Two regions, described by fixed damping isoclines, are assigned for pole-clustering in the open-left half plane (LHP). Other than regional pole clustering, gain and phase margins, as frequency domain specifications, are considered. Both robust stability and robust performance are considered by stabilizing a set of principle segment plants simultaneously. Optimal pole-placer PID controllers are computed analytically. If a robust control basin does exist for a specific compromise of control objective, the criterion of the maximum inscribed circle is considered to compute the maximum radius of controller resiliency. The merit of the proposed design is the simultaneous consideration of three control concerns, namely performance optimality, stability robustness and controller resiliency. Computation, validation, and simulation results are presented to show the simplicity and efficacy of the suggested method in tracing control basins (CBs) of all admissible PID controllers.
doi_str_mv 10.1109/ACCESS.2021.3100415
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2557978597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9497107</ieee_id><doaj_id>oai_doaj_org_article_7cdd7b4558894e239fc8d8a091b90436</doaj_id><sourcerecordid>2557978597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-11a886393d40af8fa89dc9053dd99a57ad5abfb8214a9069e2a0a59e27f1f5033</originalsourceid><addsrcrecordid>eNpNUV1r3DAQNKGFhCS_IC-CPPsqWZYl9e3wpe1BSsqlzatY6-Oqw2ddJTnQf18lDqH7MssyM7vLVNUNwStCsPy07vu7x8dVgxuyogTjlrCz6qIhnawpo92H__rz6jqlAy4lyojxi-p5Z5MfvZ0y2pRuP6Hg0C4Mc8ro-zxmXz8MB6uzf7YJ_dhuUB-mHMM42piQCxGt5xyOkL1GT2HMsLdoZ_fzCDnE9Blt6o3V4XgKyWcfJrQ-nWIA_fuq-uhgTPb6DS-rX1_ufvbf6vuHr9t-fV_rFotcEwJCdFRS02JwwoGQRkvMqDFSAuNgGAxuEA1pQeJO2gYwsALcEccwpZfVdvE1AQ7qFP0R4l8VwKvXQYh7BbEcP1rFtTF8aBkTQra2odJpYQRgSQaJW9oVr9vFq7zwZ7Ypq0OY41TOVw1jXHLBJC8surB0DClF6963Eqxe8lJLXuolL_WWV1HdLCpvrX1XyFZygjn9BxyqkY0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557978597</pqid></control><display><type>article</type><title>Resilient Design of Robust Multi-Objectives PID Controllers for Automatic Voltage Regulators: D-Decomposition Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ali, Mahmoud N. ; Soliman, Mahmoud ; Mahmoud, Karar ; Guerrero, Josep M. ; Lehtonen, Matti ; Darwish, Mohamed M. F.</creator><creatorcontrib>Ali, Mahmoud N. ; Soliman, Mahmoud ; Mahmoud, Karar ; Guerrero, Josep M. ; Lehtonen, Matti ; Darwish, Mohamed M. F.</creatorcontrib><description><![CDATA[Resilient design of robust multi-objectives PID controllers via the D-decomposition method is presented in this paper for automatic voltage regulators (AVRs). The stabilizing interval of derivative gain (<inline-formula> <tex-math notation="LaTeX">k_{d} </tex-math></inline-formula>) is analytically calculated by the Routh-Hurwitz criterion. The <inline-formula> <tex-math notation="LaTeX">k_{p}-k_{i} </tex-math></inline-formula> domain, for a fixed value of <inline-formula> <tex-math notation="LaTeX">k_{d} </tex-math></inline-formula>, is decomposed in root invariant regions by mapping the stability boundary from the complex plane. Two regions, described by fixed damping isoclines, are assigned for pole-clustering in the open-left half plane (LHP). Other than regional pole clustering, gain and phase margins, as frequency domain specifications, are considered. Both robust stability and robust performance are considered by stabilizing a set of principle segment plants simultaneously. Optimal pole-placer PID controllers are computed analytically. If a robust control basin does exist for a specific compromise of control objective, the criterion of the maximum inscribed circle is considered to compute the maximum radius of controller resiliency. The merit of the proposed design is the simultaneous consideration of three control concerns, namely performance optimality, stability robustness and controller resiliency. Computation, validation, and simulation results are presented to show the simplicity and efficacy of the suggested method in tracing control basins (CBs) of all admissible PID controllers.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3100415</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Clustering ; control basin ; Control stability ; Controllers ; D-decomposition ; Damping ; Decomposition ; gain and phase margins ; optimality ; Optimization ; PID control ; Power system stability ; Proportional integral derivative ; regional pole-placement ; Resilience ; Robust control ; Robustness ; Routh-Hurwitz criterion ; Stability criteria ; Uncertainty ; Voltage control ; Voltage regulators</subject><ispartof>IEEE access, 2021, Vol.9, p.106589-106605</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-11a886393d40af8fa89dc9053dd99a57ad5abfb8214a9069e2a0a59e27f1f5033</citedby><cites>FETCH-LOGICAL-c408t-11a886393d40af8fa89dc9053dd99a57ad5abfb8214a9069e2a0a59e27f1f5033</cites><orcidid>0000-0002-6729-6809 ; 0000-0001-9860-6550 ; 0000-0001-5236-4592 ; 0000-0001-9782-8813 ; 0000-0003-3467-2588 ; 0000-0002-9979-7333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9497107$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ali, Mahmoud N.</creatorcontrib><creatorcontrib>Soliman, Mahmoud</creatorcontrib><creatorcontrib>Mahmoud, Karar</creatorcontrib><creatorcontrib>Guerrero, Josep M.</creatorcontrib><creatorcontrib>Lehtonen, Matti</creatorcontrib><creatorcontrib>Darwish, Mohamed M. F.</creatorcontrib><title>Resilient Design of Robust Multi-Objectives PID Controllers for Automatic Voltage Regulators: D-Decomposition Approach</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Resilient design of robust multi-objectives PID controllers via the D-decomposition method is presented in this paper for automatic voltage regulators (AVRs). The stabilizing interval of derivative gain (<inline-formula> <tex-math notation="LaTeX">k_{d} </tex-math></inline-formula>) is analytically calculated by the Routh-Hurwitz criterion. The <inline-formula> <tex-math notation="LaTeX">k_{p}-k_{i} </tex-math></inline-formula> domain, for a fixed value of <inline-formula> <tex-math notation="LaTeX">k_{d} </tex-math></inline-formula>, is decomposed in root invariant regions by mapping the stability boundary from the complex plane. Two regions, described by fixed damping isoclines, are assigned for pole-clustering in the open-left half plane (LHP). Other than regional pole clustering, gain and phase margins, as frequency domain specifications, are considered. Both robust stability and robust performance are considered by stabilizing a set of principle segment plants simultaneously. Optimal pole-placer PID controllers are computed analytically. If a robust control basin does exist for a specific compromise of control objective, the criterion of the maximum inscribed circle is considered to compute the maximum radius of controller resiliency. The merit of the proposed design is the simultaneous consideration of three control concerns, namely performance optimality, stability robustness and controller resiliency. Computation, validation, and simulation results are presented to show the simplicity and efficacy of the suggested method in tracing control basins (CBs) of all admissible PID controllers.]]></description><subject>Clustering</subject><subject>control basin</subject><subject>Control stability</subject><subject>Controllers</subject><subject>D-decomposition</subject><subject>Damping</subject><subject>Decomposition</subject><subject>gain and phase margins</subject><subject>optimality</subject><subject>Optimization</subject><subject>PID control</subject><subject>Power system stability</subject><subject>Proportional integral derivative</subject><subject>regional pole-placement</subject><subject>Resilience</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Routh-Hurwitz criterion</subject><subject>Stability criteria</subject><subject>Uncertainty</subject><subject>Voltage control</subject><subject>Voltage regulators</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1r3DAQNKGFhCS_IC-CPPsqWZYl9e3wpe1BSsqlzatY6-Oqw2ddJTnQf18lDqH7MssyM7vLVNUNwStCsPy07vu7x8dVgxuyogTjlrCz6qIhnawpo92H__rz6jqlAy4lyojxi-p5Z5MfvZ0y2pRuP6Hg0C4Mc8ro-zxmXz8MB6uzf7YJ_dhuUB-mHMM42piQCxGt5xyOkL1GT2HMsLdoZ_fzCDnE9Blt6o3V4XgKyWcfJrQ-nWIA_fuq-uhgTPb6DS-rX1_ufvbf6vuHr9t-fV_rFotcEwJCdFRS02JwwoGQRkvMqDFSAuNgGAxuEA1pQeJO2gYwsALcEccwpZfVdvE1AQ7qFP0R4l8VwKvXQYh7BbEcP1rFtTF8aBkTQra2odJpYQRgSQaJW9oVr9vFq7zwZ7Ypq0OY41TOVw1jXHLBJC8surB0DClF6963Eqxe8lJLXuolL_WWV1HdLCpvrX1XyFZygjn9BxyqkY0</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ali, Mahmoud N.</creator><creator>Soliman, Mahmoud</creator><creator>Mahmoud, Karar</creator><creator>Guerrero, Josep M.</creator><creator>Lehtonen, Matti</creator><creator>Darwish, Mohamed M. F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6729-6809</orcidid><orcidid>https://orcid.org/0000-0001-9860-6550</orcidid><orcidid>https://orcid.org/0000-0001-5236-4592</orcidid><orcidid>https://orcid.org/0000-0001-9782-8813</orcidid><orcidid>https://orcid.org/0000-0003-3467-2588</orcidid><orcidid>https://orcid.org/0000-0002-9979-7333</orcidid></search><sort><creationdate>2021</creationdate><title>Resilient Design of Robust Multi-Objectives PID Controllers for Automatic Voltage Regulators: D-Decomposition Approach</title><author>Ali, Mahmoud N. ; Soliman, Mahmoud ; Mahmoud, Karar ; Guerrero, Josep M. ; Lehtonen, Matti ; Darwish, Mohamed M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-11a886393d40af8fa89dc9053dd99a57ad5abfb8214a9069e2a0a59e27f1f5033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clustering</topic><topic>control basin</topic><topic>Control stability</topic><topic>Controllers</topic><topic>D-decomposition</topic><topic>Damping</topic><topic>Decomposition</topic><topic>gain and phase margins</topic><topic>optimality</topic><topic>Optimization</topic><topic>PID control</topic><topic>Power system stability</topic><topic>Proportional integral derivative</topic><topic>regional pole-placement</topic><topic>Resilience</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Routh-Hurwitz criterion</topic><topic>Stability criteria</topic><topic>Uncertainty</topic><topic>Voltage control</topic><topic>Voltage regulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Mahmoud N.</creatorcontrib><creatorcontrib>Soliman, Mahmoud</creatorcontrib><creatorcontrib>Mahmoud, Karar</creatorcontrib><creatorcontrib>Guerrero, Josep M.</creatorcontrib><creatorcontrib>Lehtonen, Matti</creatorcontrib><creatorcontrib>Darwish, Mohamed M. F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Mahmoud N.</au><au>Soliman, Mahmoud</au><au>Mahmoud, Karar</au><au>Guerrero, Josep M.</au><au>Lehtonen, Matti</au><au>Darwish, Mohamed M. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resilient Design of Robust Multi-Objectives PID Controllers for Automatic Voltage Regulators: D-Decomposition Approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>106589</spage><epage>106605</epage><pages>106589-106605</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Resilient design of robust multi-objectives PID controllers via the D-decomposition method is presented in this paper for automatic voltage regulators (AVRs). The stabilizing interval of derivative gain (<inline-formula> <tex-math notation="LaTeX">k_{d} </tex-math></inline-formula>) is analytically calculated by the Routh-Hurwitz criterion. The <inline-formula> <tex-math notation="LaTeX">k_{p}-k_{i} </tex-math></inline-formula> domain, for a fixed value of <inline-formula> <tex-math notation="LaTeX">k_{d} </tex-math></inline-formula>, is decomposed in root invariant regions by mapping the stability boundary from the complex plane. Two regions, described by fixed damping isoclines, are assigned for pole-clustering in the open-left half plane (LHP). Other than regional pole clustering, gain and phase margins, as frequency domain specifications, are considered. Both robust stability and robust performance are considered by stabilizing a set of principle segment plants simultaneously. Optimal pole-placer PID controllers are computed analytically. If a robust control basin does exist for a specific compromise of control objective, the criterion of the maximum inscribed circle is considered to compute the maximum radius of controller resiliency. The merit of the proposed design is the simultaneous consideration of three control concerns, namely performance optimality, stability robustness and controller resiliency. Computation, validation, and simulation results are presented to show the simplicity and efficacy of the suggested method in tracing control basins (CBs) of all admissible PID controllers.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3100415</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6729-6809</orcidid><orcidid>https://orcid.org/0000-0001-9860-6550</orcidid><orcidid>https://orcid.org/0000-0001-5236-4592</orcidid><orcidid>https://orcid.org/0000-0001-9782-8813</orcidid><orcidid>https://orcid.org/0000-0003-3467-2588</orcidid><orcidid>https://orcid.org/0000-0002-9979-7333</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.106589-106605
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2557978597
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Clustering
control basin
Control stability
Controllers
D-decomposition
Damping
Decomposition
gain and phase margins
optimality
Optimization
PID control
Power system stability
Proportional integral derivative
regional pole-placement
Resilience
Robust control
Robustness
Routh-Hurwitz criterion
Stability criteria
Uncertainty
Voltage control
Voltage regulators
title Resilient Design of Robust Multi-Objectives PID Controllers for Automatic Voltage Regulators: D-Decomposition Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resilient%20Design%20of%20Robust%20Multi-Objectives%20PID%20Controllers%20for%20Automatic%20Voltage%20Regulators:%20D-Decomposition%20Approach&rft.jtitle=IEEE%20access&rft.au=Ali,%20Mahmoud%20N.&rft.date=2021&rft.volume=9&rft.spage=106589&rft.epage=106605&rft.pages=106589-106605&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3100415&rft_dat=%3Cproquest_doaj_%3E2557978597%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557978597&rft_id=info:pmid/&rft_ieee_id=9497107&rft_doaj_id=oai_doaj_org_article_7cdd7b4558894e239fc8d8a091b90436&rfr_iscdi=true