Resilient Design of Robust Multi-Objectives PID Controllers for Automatic Voltage Regulators: D-Decomposition Approach
Resilient design of robust multi-objectives PID controllers via the D-decomposition method is presented in this paper for automatic voltage regulators (AVRs). The stabilizing interval of derivative gain ( k_{d} ) is analytically calculated by the Routh-Hurwitz criterion. The k_{p}-k_{i} domain, fo...
Gespeichert in:
Veröffentlicht in: | IEEE access 2021, Vol.9, p.106589-106605 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 106605 |
---|---|
container_issue | |
container_start_page | 106589 |
container_title | IEEE access |
container_volume | 9 |
creator | Ali, Mahmoud N. Soliman, Mahmoud Mahmoud, Karar Guerrero, Josep M. Lehtonen, Matti Darwish, Mohamed M. F. |
description | Resilient design of robust multi-objectives PID controllers via the D-decomposition method is presented in this paper for automatic voltage regulators (AVRs). The stabilizing interval of derivative gain ( k_{d} ) is analytically calculated by the Routh-Hurwitz criterion. The k_{p}-k_{i} domain, for a fixed value of k_{d} , is decomposed in root invariant regions by mapping the stability boundary from the complex plane. Two regions, described by fixed damping isoclines, are assigned for pole-clustering in the open-left half plane (LHP). Other than regional pole clustering, gain and phase margins, as frequency domain specifications, are considered. Both robust stability and robust performance are considered by stabilizing a set of principle segment plants simultaneously. Optimal pole-placer PID controllers are computed analytically. If a robust control basin does exist for a specific compromise of control objective, the criterion of the maximum inscribed circle is considered to compute the maximum radius of controller resiliency. The merit of the proposed design is the simultaneous consideration of three control concerns, namely performance optimality, stability robustness and controller resiliency. Computation, validation, and simulation results are presented to show the simplicity and efficacy of the suggested method in tracing control basins (CBs) of all admissible PID controllers. |
doi_str_mv | 10.1109/ACCESS.2021.3100415 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2557978597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9497107</ieee_id><doaj_id>oai_doaj_org_article_7cdd7b4558894e239fc8d8a091b90436</doaj_id><sourcerecordid>2557978597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-11a886393d40af8fa89dc9053dd99a57ad5abfb8214a9069e2a0a59e27f1f5033</originalsourceid><addsrcrecordid>eNpNUV1r3DAQNKGFhCS_IC-CPPsqWZYl9e3wpe1BSsqlzatY6-Oqw2ddJTnQf18lDqH7MssyM7vLVNUNwStCsPy07vu7x8dVgxuyogTjlrCz6qIhnawpo92H__rz6jqlAy4lyojxi-p5Z5MfvZ0y2pRuP6Hg0C4Mc8ro-zxmXz8MB6uzf7YJ_dhuUB-mHMM42piQCxGt5xyOkL1GT2HMsLdoZ_fzCDnE9Blt6o3V4XgKyWcfJrQ-nWIA_fuq-uhgTPb6DS-rX1_ufvbf6vuHr9t-fV_rFotcEwJCdFRS02JwwoGQRkvMqDFSAuNgGAxuEA1pQeJO2gYwsALcEccwpZfVdvE1AQ7qFP0R4l8VwKvXQYh7BbEcP1rFtTF8aBkTQra2odJpYQRgSQaJW9oVr9vFq7zwZ7Ypq0OY41TOVw1jXHLBJC8surB0DClF6963Eqxe8lJLXuolL_WWV1HdLCpvrX1XyFZygjn9BxyqkY0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557978597</pqid></control><display><type>article</type><title>Resilient Design of Robust Multi-Objectives PID Controllers for Automatic Voltage Regulators: D-Decomposition Approach</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ali, Mahmoud N. ; Soliman, Mahmoud ; Mahmoud, Karar ; Guerrero, Josep M. ; Lehtonen, Matti ; Darwish, Mohamed M. F.</creator><creatorcontrib>Ali, Mahmoud N. ; Soliman, Mahmoud ; Mahmoud, Karar ; Guerrero, Josep M. ; Lehtonen, Matti ; Darwish, Mohamed M. F.</creatorcontrib><description><![CDATA[Resilient design of robust multi-objectives PID controllers via the D-decomposition method is presented in this paper for automatic voltage regulators (AVRs). The stabilizing interval of derivative gain (<inline-formula> <tex-math notation="LaTeX">k_{d} </tex-math></inline-formula>) is analytically calculated by the Routh-Hurwitz criterion. The <inline-formula> <tex-math notation="LaTeX">k_{p}-k_{i} </tex-math></inline-formula> domain, for a fixed value of <inline-formula> <tex-math notation="LaTeX">k_{d} </tex-math></inline-formula>, is decomposed in root invariant regions by mapping the stability boundary from the complex plane. Two regions, described by fixed damping isoclines, are assigned for pole-clustering in the open-left half plane (LHP). Other than regional pole clustering, gain and phase margins, as frequency domain specifications, are considered. Both robust stability and robust performance are considered by stabilizing a set of principle segment plants simultaneously. Optimal pole-placer PID controllers are computed analytically. If a robust control basin does exist for a specific compromise of control objective, the criterion of the maximum inscribed circle is considered to compute the maximum radius of controller resiliency. The merit of the proposed design is the simultaneous consideration of three control concerns, namely performance optimality, stability robustness and controller resiliency. Computation, validation, and simulation results are presented to show the simplicity and efficacy of the suggested method in tracing control basins (CBs) of all admissible PID controllers.]]></description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3100415</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Clustering ; control basin ; Control stability ; Controllers ; D-decomposition ; Damping ; Decomposition ; gain and phase margins ; optimality ; Optimization ; PID control ; Power system stability ; Proportional integral derivative ; regional pole-placement ; Resilience ; Robust control ; Robustness ; Routh-Hurwitz criterion ; Stability criteria ; Uncertainty ; Voltage control ; Voltage regulators</subject><ispartof>IEEE access, 2021, Vol.9, p.106589-106605</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-11a886393d40af8fa89dc9053dd99a57ad5abfb8214a9069e2a0a59e27f1f5033</citedby><cites>FETCH-LOGICAL-c408t-11a886393d40af8fa89dc9053dd99a57ad5abfb8214a9069e2a0a59e27f1f5033</cites><orcidid>0000-0002-6729-6809 ; 0000-0001-9860-6550 ; 0000-0001-5236-4592 ; 0000-0001-9782-8813 ; 0000-0003-3467-2588 ; 0000-0002-9979-7333</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9497107$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,2096,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ali, Mahmoud N.</creatorcontrib><creatorcontrib>Soliman, Mahmoud</creatorcontrib><creatorcontrib>Mahmoud, Karar</creatorcontrib><creatorcontrib>Guerrero, Josep M.</creatorcontrib><creatorcontrib>Lehtonen, Matti</creatorcontrib><creatorcontrib>Darwish, Mohamed M. F.</creatorcontrib><title>Resilient Design of Robust Multi-Objectives PID Controllers for Automatic Voltage Regulators: D-Decomposition Approach</title><title>IEEE access</title><addtitle>Access</addtitle><description><![CDATA[Resilient design of robust multi-objectives PID controllers via the D-decomposition method is presented in this paper for automatic voltage regulators (AVRs). The stabilizing interval of derivative gain (<inline-formula> <tex-math notation="LaTeX">k_{d} </tex-math></inline-formula>) is analytically calculated by the Routh-Hurwitz criterion. The <inline-formula> <tex-math notation="LaTeX">k_{p}-k_{i} </tex-math></inline-formula> domain, for a fixed value of <inline-formula> <tex-math notation="LaTeX">k_{d} </tex-math></inline-formula>, is decomposed in root invariant regions by mapping the stability boundary from the complex plane. Two regions, described by fixed damping isoclines, are assigned for pole-clustering in the open-left half plane (LHP). Other than regional pole clustering, gain and phase margins, as frequency domain specifications, are considered. Both robust stability and robust performance are considered by stabilizing a set of principle segment plants simultaneously. Optimal pole-placer PID controllers are computed analytically. If a robust control basin does exist for a specific compromise of control objective, the criterion of the maximum inscribed circle is considered to compute the maximum radius of controller resiliency. The merit of the proposed design is the simultaneous consideration of three control concerns, namely performance optimality, stability robustness and controller resiliency. Computation, validation, and simulation results are presented to show the simplicity and efficacy of the suggested method in tracing control basins (CBs) of all admissible PID controllers.]]></description><subject>Clustering</subject><subject>control basin</subject><subject>Control stability</subject><subject>Controllers</subject><subject>D-decomposition</subject><subject>Damping</subject><subject>Decomposition</subject><subject>gain and phase margins</subject><subject>optimality</subject><subject>Optimization</subject><subject>PID control</subject><subject>Power system stability</subject><subject>Proportional integral derivative</subject><subject>regional pole-placement</subject><subject>Resilience</subject><subject>Robust control</subject><subject>Robustness</subject><subject>Routh-Hurwitz criterion</subject><subject>Stability criteria</subject><subject>Uncertainty</subject><subject>Voltage control</subject><subject>Voltage regulators</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUV1r3DAQNKGFhCS_IC-CPPsqWZYl9e3wpe1BSsqlzatY6-Oqw2ddJTnQf18lDqH7MssyM7vLVNUNwStCsPy07vu7x8dVgxuyogTjlrCz6qIhnawpo92H__rz6jqlAy4lyojxi-p5Z5MfvZ0y2pRuP6Hg0C4Mc8ro-zxmXz8MB6uzf7YJ_dhuUB-mHMM42piQCxGt5xyOkL1GT2HMsLdoZ_fzCDnE9Blt6o3V4XgKyWcfJrQ-nWIA_fuq-uhgTPb6DS-rX1_ufvbf6vuHr9t-fV_rFotcEwJCdFRS02JwwoGQRkvMqDFSAuNgGAxuEA1pQeJO2gYwsALcEccwpZfVdvE1AQ7qFP0R4l8VwKvXQYh7BbEcP1rFtTF8aBkTQra2odJpYQRgSQaJW9oVr9vFq7zwZ7Ypq0OY41TOVw1jXHLBJC8surB0DClF6963Eqxe8lJLXuolL_WWV1HdLCpvrX1XyFZygjn9BxyqkY0</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ali, Mahmoud N.</creator><creator>Soliman, Mahmoud</creator><creator>Mahmoud, Karar</creator><creator>Guerrero, Josep M.</creator><creator>Lehtonen, Matti</creator><creator>Darwish, Mohamed M. F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6729-6809</orcidid><orcidid>https://orcid.org/0000-0001-9860-6550</orcidid><orcidid>https://orcid.org/0000-0001-5236-4592</orcidid><orcidid>https://orcid.org/0000-0001-9782-8813</orcidid><orcidid>https://orcid.org/0000-0003-3467-2588</orcidid><orcidid>https://orcid.org/0000-0002-9979-7333</orcidid></search><sort><creationdate>2021</creationdate><title>Resilient Design of Robust Multi-Objectives PID Controllers for Automatic Voltage Regulators: D-Decomposition Approach</title><author>Ali, Mahmoud N. ; Soliman, Mahmoud ; Mahmoud, Karar ; Guerrero, Josep M. ; Lehtonen, Matti ; Darwish, Mohamed M. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-11a886393d40af8fa89dc9053dd99a57ad5abfb8214a9069e2a0a59e27f1f5033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Clustering</topic><topic>control basin</topic><topic>Control stability</topic><topic>Controllers</topic><topic>D-decomposition</topic><topic>Damping</topic><topic>Decomposition</topic><topic>gain and phase margins</topic><topic>optimality</topic><topic>Optimization</topic><topic>PID control</topic><topic>Power system stability</topic><topic>Proportional integral derivative</topic><topic>regional pole-placement</topic><topic>Resilience</topic><topic>Robust control</topic><topic>Robustness</topic><topic>Routh-Hurwitz criterion</topic><topic>Stability criteria</topic><topic>Uncertainty</topic><topic>Voltage control</topic><topic>Voltage regulators</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ali, Mahmoud N.</creatorcontrib><creatorcontrib>Soliman, Mahmoud</creatorcontrib><creatorcontrib>Mahmoud, Karar</creatorcontrib><creatorcontrib>Guerrero, Josep M.</creatorcontrib><creatorcontrib>Lehtonen, Matti</creatorcontrib><creatorcontrib>Darwish, Mohamed M. F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ali, Mahmoud N.</au><au>Soliman, Mahmoud</au><au>Mahmoud, Karar</au><au>Guerrero, Josep M.</au><au>Lehtonen, Matti</au><au>Darwish, Mohamed M. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resilient Design of Robust Multi-Objectives PID Controllers for Automatic Voltage Regulators: D-Decomposition Approach</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>106589</spage><epage>106605</epage><pages>106589-106605</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract><![CDATA[Resilient design of robust multi-objectives PID controllers via the D-decomposition method is presented in this paper for automatic voltage regulators (AVRs). The stabilizing interval of derivative gain (<inline-formula> <tex-math notation="LaTeX">k_{d} </tex-math></inline-formula>) is analytically calculated by the Routh-Hurwitz criterion. The <inline-formula> <tex-math notation="LaTeX">k_{p}-k_{i} </tex-math></inline-formula> domain, for a fixed value of <inline-formula> <tex-math notation="LaTeX">k_{d} </tex-math></inline-formula>, is decomposed in root invariant regions by mapping the stability boundary from the complex plane. Two regions, described by fixed damping isoclines, are assigned for pole-clustering in the open-left half plane (LHP). Other than regional pole clustering, gain and phase margins, as frequency domain specifications, are considered. Both robust stability and robust performance are considered by stabilizing a set of principle segment plants simultaneously. Optimal pole-placer PID controllers are computed analytically. If a robust control basin does exist for a specific compromise of control objective, the criterion of the maximum inscribed circle is considered to compute the maximum radius of controller resiliency. The merit of the proposed design is the simultaneous consideration of three control concerns, namely performance optimality, stability robustness and controller resiliency. Computation, validation, and simulation results are presented to show the simplicity and efficacy of the suggested method in tracing control basins (CBs) of all admissible PID controllers.]]></abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3100415</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-6729-6809</orcidid><orcidid>https://orcid.org/0000-0001-9860-6550</orcidid><orcidid>https://orcid.org/0000-0001-5236-4592</orcidid><orcidid>https://orcid.org/0000-0001-9782-8813</orcidid><orcidid>https://orcid.org/0000-0003-3467-2588</orcidid><orcidid>https://orcid.org/0000-0002-9979-7333</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.106589-106605 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2557978597 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Clustering control basin Control stability Controllers D-decomposition Damping Decomposition gain and phase margins optimality Optimization PID control Power system stability Proportional integral derivative regional pole-placement Resilience Robust control Robustness Routh-Hurwitz criterion Stability criteria Uncertainty Voltage control Voltage regulators |
title | Resilient Design of Robust Multi-Objectives PID Controllers for Automatic Voltage Regulators: D-Decomposition Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resilient%20Design%20of%20Robust%20Multi-Objectives%20PID%20Controllers%20for%20Automatic%20Voltage%20Regulators:%20D-Decomposition%20Approach&rft.jtitle=IEEE%20access&rft.au=Ali,%20Mahmoud%20N.&rft.date=2021&rft.volume=9&rft.spage=106589&rft.epage=106605&rft.pages=106589-106605&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3100415&rft_dat=%3Cproquest_doaj_%3E2557978597%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557978597&rft_id=info:pmid/&rft_ieee_id=9497107&rft_doaj_id=oai_doaj_org_article_7cdd7b4558894e239fc8d8a091b90436&rfr_iscdi=true |