Wind speed forecasting using First Order Markov Transition with Regime Switch and Time Duration

Due to the dynamic nature of time series, it is common to deploy varying models in predicting behavior of the inherent characteristics in time series. The growing need in nonlinear series prediction and the limitations of linear models in predicting the behaviors of such, lead to the quest of models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Earth and environmental science 2019-08, Vol.322 (1), p.12016
Hauptverfasser: Elwan, A A, Habibuddin, H M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 12016
container_title IOP conference series. Earth and environmental science
container_volume 322
creator Elwan, A A
Habibuddin, H M
description Due to the dynamic nature of time series, it is common to deploy varying models in predicting behavior of the inherent characteristics in time series. The growing need in nonlinear series prediction and the limitations of linear models in predicting the behaviors of such, lead to the quest of models capable of predicting both dynamic and non-linear behaviors in time series. Markov Regime switching model commonly referred to as the regime switching model is used to forecast wind speed taking into account variation of speed with time. Eviews, a statistical, econometric and economic modelling package is used for the Markov regime switch estimation, simulation and forecasting of A 24-hour period real wind speed data measurement from NREL. Values obtained from forecast accuracy evaluation are Root Mean Squared Error (RMSE) is at 0.242, the Mean Absolute Error (MAE) is 0.17 and the Mean Absolute Percentage Error (MAPE) is 31.38. The statistics showed that the forecast is closely related to the actual values.
doi_str_mv 10.1088/1755-1315/322/1/012016
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2557919428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557919428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2696-a313940aade830bb2022729feef6d99310bc68b478b75b527f4584029739ce63</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKd_QQLeeFObjyZpLmVuKkwEV_AypG26ZbqmJq3iv7elMhEEb3JyOM95DzwAnGN0hVGaxlgwFmGKWUwJiXGMMEGYH4DJfnC4_yNxDE5C2CLERULlBKhnW5cwNMaUsHLeFDq0tl7DLgzvwvrQwkdfGg8ftH9x7zDzug62ta6GH7bdwCeztjsDV31TbKDuw7Khv-m8HqBTcFTp12DOvusUZIt5NruLlo-397PrZVQQLnmkKaYyQVqXJqUozwkiRBBZGVPxUkqKUV7wNE9EmguWMyKqhKUJIlJQWRhOp-BijG28e-tMaNXWdb7uLyrCmJBYJiTtKT5ShXcheFOpxtud9p8KIzW4VIMmNShTvUuF1eiyX7wcF61rfpLn89UvTDVl1aPkD_Sf_C_WYYHj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557919428</pqid></control><display><type>article</type><title>Wind speed forecasting using First Order Markov Transition with Regime Switch and Time Duration</title><source>IOP Publishing Free Content</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><creator>Elwan, A A ; Habibuddin, H M</creator><creatorcontrib>Elwan, A A ; Habibuddin, H M</creatorcontrib><description>Due to the dynamic nature of time series, it is common to deploy varying models in predicting behavior of the inherent characteristics in time series. The growing need in nonlinear series prediction and the limitations of linear models in predicting the behaviors of such, lead to the quest of models capable of predicting both dynamic and non-linear behaviors in time series. Markov Regime switching model commonly referred to as the regime switching model is used to forecast wind speed taking into account variation of speed with time. Eviews, a statistical, econometric and economic modelling package is used for the Markov regime switch estimation, simulation and forecasting of A 24-hour period real wind speed data measurement from NREL. Values obtained from forecast accuracy evaluation are Root Mean Squared Error (RMSE) is at 0.242, the Mean Absolute Error (MAE) is 0.17 and the Mean Absolute Percentage Error (MAPE) is 31.38. The statistics showed that the forecast is closely related to the actual values.</description><identifier>ISSN: 1755-1307</identifier><identifier>EISSN: 1755-1315</identifier><identifier>DOI: 10.1088/1755-1315/322/1/012016</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Economic models ; Forecasting ; Mathematical models ; Predictions ; Root-mean-square errors ; Switching ; Time series ; Wind measurement ; Wind speed</subject><ispartof>IOP conference series. Earth and environmental science, 2019-08, Vol.322 (1), p.12016</ispartof><rights>Published under licence by IOP Publishing Ltd</rights><rights>2019. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2696-a313940aade830bb2022729feef6d99310bc68b478b75b527f4584029739ce63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/1755-1315/322/1/012016/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Elwan, A A</creatorcontrib><creatorcontrib>Habibuddin, H M</creatorcontrib><title>Wind speed forecasting using First Order Markov Transition with Regime Switch and Time Duration</title><title>IOP conference series. Earth and environmental science</title><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><description>Due to the dynamic nature of time series, it is common to deploy varying models in predicting behavior of the inherent characteristics in time series. The growing need in nonlinear series prediction and the limitations of linear models in predicting the behaviors of such, lead to the quest of models capable of predicting both dynamic and non-linear behaviors in time series. Markov Regime switching model commonly referred to as the regime switching model is used to forecast wind speed taking into account variation of speed with time. Eviews, a statistical, econometric and economic modelling package is used for the Markov regime switch estimation, simulation and forecasting of A 24-hour period real wind speed data measurement from NREL. Values obtained from forecast accuracy evaluation are Root Mean Squared Error (RMSE) is at 0.242, the Mean Absolute Error (MAE) is 0.17 and the Mean Absolute Percentage Error (MAPE) is 31.38. The statistics showed that the forecast is closely related to the actual values.</description><subject>Economic models</subject><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Predictions</subject><subject>Root-mean-square errors</subject><subject>Switching</subject><subject>Time series</subject><subject>Wind measurement</subject><subject>Wind speed</subject><issn>1755-1307</issn><issn>1755-1315</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkF1LwzAUhoMoOKd_QQLeeFObjyZpLmVuKkwEV_AypG26ZbqmJq3iv7elMhEEb3JyOM95DzwAnGN0hVGaxlgwFmGKWUwJiXGMMEGYH4DJfnC4_yNxDE5C2CLERULlBKhnW5cwNMaUsHLeFDq0tl7DLgzvwvrQwkdfGg8ftH9x7zDzug62ta6GH7bdwCeztjsDV31TbKDuw7Khv-m8HqBTcFTp12DOvusUZIt5NruLlo-397PrZVQQLnmkKaYyQVqXJqUozwkiRBBZGVPxUkqKUV7wNE9EmguWMyKqhKUJIlJQWRhOp-BijG28e-tMaNXWdb7uLyrCmJBYJiTtKT5ShXcheFOpxtud9p8KIzW4VIMmNShTvUuF1eiyX7wcF61rfpLn89UvTDVl1aPkD_Sf_C_WYYHj</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Elwan, A A</creator><creator>Habibuddin, H M</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20190801</creationdate><title>Wind speed forecasting using First Order Markov Transition with Regime Switch and Time Duration</title><author>Elwan, A A ; Habibuddin, H M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2696-a313940aade830bb2022729feef6d99310bc68b478b75b527f4584029739ce63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Economic models</topic><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Predictions</topic><topic>Root-mean-square errors</topic><topic>Switching</topic><topic>Time series</topic><topic>Wind measurement</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elwan, A A</creatorcontrib><creatorcontrib>Habibuddin, H M</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>IOP conference series. Earth and environmental science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elwan, A A</au><au>Habibuddin, H M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wind speed forecasting using First Order Markov Transition with Regime Switch and Time Duration</atitle><jtitle>IOP conference series. Earth and environmental science</jtitle><addtitle>IOP Conf. Ser.: Earth Environ. Sci</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>322</volume><issue>1</issue><spage>12016</spage><pages>12016-</pages><issn>1755-1307</issn><eissn>1755-1315</eissn><abstract>Due to the dynamic nature of time series, it is common to deploy varying models in predicting behavior of the inherent characteristics in time series. The growing need in nonlinear series prediction and the limitations of linear models in predicting the behaviors of such, lead to the quest of models capable of predicting both dynamic and non-linear behaviors in time series. Markov Regime switching model commonly referred to as the regime switching model is used to forecast wind speed taking into account variation of speed with time. Eviews, a statistical, econometric and economic modelling package is used for the Markov regime switch estimation, simulation and forecasting of A 24-hour period real wind speed data measurement from NREL. Values obtained from forecast accuracy evaluation are Root Mean Squared Error (RMSE) is at 0.242, the Mean Absolute Error (MAE) is 0.17 and the Mean Absolute Percentage Error (MAPE) is 31.38. The statistics showed that the forecast is closely related to the actual values.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1755-1315/322/1/012016</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-1307
ispartof IOP conference series. Earth and environmental science, 2019-08, Vol.322 (1), p.12016
issn 1755-1307
1755-1315
language eng
recordid cdi_proquest_journals_2557919428
source IOP Publishing Free Content; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra
subjects Economic models
Forecasting
Mathematical models
Predictions
Root-mean-square errors
Switching
Time series
Wind measurement
Wind speed
title Wind speed forecasting using First Order Markov Transition with Regime Switch and Time Duration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T18%3A49%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wind%20speed%20forecasting%20using%20First%20Order%20Markov%20Transition%20with%20Regime%20Switch%20and%20Time%20Duration&rft.jtitle=IOP%20conference%20series.%20Earth%20and%20environmental%20science&rft.au=Elwan,%20A%20A&rft.date=2019-08-01&rft.volume=322&rft.issue=1&rft.spage=12016&rft.pages=12016-&rft.issn=1755-1307&rft.eissn=1755-1315&rft_id=info:doi/10.1088/1755-1315/322/1/012016&rft_dat=%3Cproquest_iop_j%3E2557919428%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557919428&rft_id=info:pmid/&rfr_iscdi=true