Deep Neural Network for Compressive Sensing and Application to Massive MIMO Channel Estimation

In this paper, we consider the problem of sparse signal recovery using a learned dictionary in multiple measurement vectors (MMVs) case. Employing deep neural networks, we provide two new greedy algorithms to solve sparse MMV problems. In the first algorithm, we create a stacked vector of measuremen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2021-09, Vol.40 (9), p.4474-4489
Hauptverfasser: Mohades, Zohreh, Tabataba Vakili, Vahid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4489
container_issue 9
container_start_page 4474
container_title Circuits, systems, and signal processing
container_volume 40
creator Mohades, Zohreh
Tabataba Vakili, Vahid
description In this paper, we consider the problem of sparse signal recovery using a learned dictionary in multiple measurement vectors (MMVs) case. Employing deep neural networks, we provide two new greedy algorithms to solve sparse MMV problems. In the first algorithm, we create a stacked vector of measurement matrix columns and a new measurement matrix, which can be assumed as the Kronecker product of the primary compressive sampling matrix and a unitary matrix. In order to reconstruct sparse vector corresponding to this new set of equations, a four-layer feed-forward neural network is applied. In the second algorithm, joint sparse structure of the sparse vectors is considered. Recurrent neural networks are employed to extract the joint sparsity structure. In addition, we utilize an over-complete dictionary obtained from an unsupervised learning procedure. Simulation results illustrate the benefit of using the proposed methods. Finally, the proposed algorithms are applied for pilot-based channel estimation in massive multiple-input multiple-output systems to improve the channel state information recovery performance.
doi_str_mv 10.1007/s00034-021-01675-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557918356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557918356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-61ef82c7e0a4e752f9f5e6b6cc6d9640f6eed4f3aa1db3a0714cbf04043396a73</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqXwA0yWmAPPcWwnYxUKVGrpAEhMWG7yXFLaONgpiH49oUFiY7rLufc9HULOGVwyAHUVAIAnEcQsAiaViHYHZMAEZ5FIVXpIBhCrNIKUPR-TkxBWACxLsnhAXq4RG3qPW2_WXbSfzr9R6zzN3abxGEL1gfQB61DVS2rqko6aZl0Vpq1cTVtHZ6ZHZpPZnOavpq5xTcehrTZ75JQcWbMOePabQ_J0M37M76Lp_HaSj6ZRwVnWRpKhTeNCIZgElYhtZgXKhSwKWWYyASsRy8RyY1i54AYUS4qFhQQSzjNpFB-Si3638e59i6HVK7f1dXdSx0KojKVcyI6Ke6rwLgSPVje-e9R_aQb6x6PuPerOo9571LuuxPtS6OB6if5v-p_WN9PIdtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557918356</pqid></control><display><type>article</type><title>Deep Neural Network for Compressive Sensing and Application to Massive MIMO Channel Estimation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mohades, Zohreh ; Tabataba Vakili, Vahid</creator><creatorcontrib>Mohades, Zohreh ; Tabataba Vakili, Vahid</creatorcontrib><description>In this paper, we consider the problem of sparse signal recovery using a learned dictionary in multiple measurement vectors (MMVs) case. Employing deep neural networks, we provide two new greedy algorithms to solve sparse MMV problems. In the first algorithm, we create a stacked vector of measurement matrix columns and a new measurement matrix, which can be assumed as the Kronecker product of the primary compressive sampling matrix and a unitary matrix. In order to reconstruct sparse vector corresponding to this new set of equations, a four-layer feed-forward neural network is applied. In the second algorithm, joint sparse structure of the sparse vectors is considered. Recurrent neural networks are employed to extract the joint sparsity structure. In addition, we utilize an over-complete dictionary obtained from an unsupervised learning procedure. Simulation results illustrate the benefit of using the proposed methods. Finally, the proposed algorithms are applied for pilot-based channel estimation in massive multiple-input multiple-output systems to improve the channel state information recovery performance.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-021-01675-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial neural networks ; Circuits and Systems ; Columns (structural) ; Dictionaries ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Greedy algorithms ; Instrumentation ; Machine learning ; Mathematical analysis ; Matrix algebra ; Neural networks ; Recovery ; Recurrent neural networks ; Signal reconstruction ; Signal,Image and Speech Processing</subject><ispartof>Circuits, systems, and signal processing, 2021-09, Vol.40 (9), p.4474-4489</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-61ef82c7e0a4e752f9f5e6b6cc6d9640f6eed4f3aa1db3a0714cbf04043396a73</citedby><cites>FETCH-LOGICAL-c319t-61ef82c7e0a4e752f9f5e6b6cc6d9640f6eed4f3aa1db3a0714cbf04043396a73</cites><orcidid>0000-0003-3627-0478</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-021-01675-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-021-01675-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mohades, Zohreh</creatorcontrib><creatorcontrib>Tabataba Vakili, Vahid</creatorcontrib><title>Deep Neural Network for Compressive Sensing and Application to Massive MIMO Channel Estimation</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>In this paper, we consider the problem of sparse signal recovery using a learned dictionary in multiple measurement vectors (MMVs) case. Employing deep neural networks, we provide two new greedy algorithms to solve sparse MMV problems. In the first algorithm, we create a stacked vector of measurement matrix columns and a new measurement matrix, which can be assumed as the Kronecker product of the primary compressive sampling matrix and a unitary matrix. In order to reconstruct sparse vector corresponding to this new set of equations, a four-layer feed-forward neural network is applied. In the second algorithm, joint sparse structure of the sparse vectors is considered. Recurrent neural networks are employed to extract the joint sparsity structure. In addition, we utilize an over-complete dictionary obtained from an unsupervised learning procedure. Simulation results illustrate the benefit of using the proposed methods. Finally, the proposed algorithms are applied for pilot-based channel estimation in massive multiple-input multiple-output systems to improve the channel state information recovery performance.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Circuits and Systems</subject><subject>Columns (structural)</subject><subject>Dictionaries</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Greedy algorithms</subject><subject>Instrumentation</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Matrix algebra</subject><subject>Neural networks</subject><subject>Recovery</subject><subject>Recurrent neural networks</subject><subject>Signal reconstruction</subject><subject>Signal,Image and Speech Processing</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kLFOwzAURS0EEqXwA0yWmAPPcWwnYxUKVGrpAEhMWG7yXFLaONgpiH49oUFiY7rLufc9HULOGVwyAHUVAIAnEcQsAiaViHYHZMAEZ5FIVXpIBhCrNIKUPR-TkxBWACxLsnhAXq4RG3qPW2_WXbSfzr9R6zzN3abxGEL1gfQB61DVS2rqko6aZl0Vpq1cTVtHZ6ZHZpPZnOavpq5xTcehrTZ75JQcWbMOePabQ_J0M37M76Lp_HaSj6ZRwVnWRpKhTeNCIZgElYhtZgXKhSwKWWYyASsRy8RyY1i54AYUS4qFhQQSzjNpFB-Si3638e59i6HVK7f1dXdSx0KojKVcyI6Ke6rwLgSPVje-e9R_aQb6x6PuPerOo9571LuuxPtS6OB6if5v-p_WN9PIdtg</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Mohades, Zohreh</creator><creator>Tabataba Vakili, Vahid</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-3627-0478</orcidid></search><sort><creationdate>20210901</creationdate><title>Deep Neural Network for Compressive Sensing and Application to Massive MIMO Channel Estimation</title><author>Mohades, Zohreh ; Tabataba Vakili, Vahid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-61ef82c7e0a4e752f9f5e6b6cc6d9640f6eed4f3aa1db3a0714cbf04043396a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Circuits and Systems</topic><topic>Columns (structural)</topic><topic>Dictionaries</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Greedy algorithms</topic><topic>Instrumentation</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Matrix algebra</topic><topic>Neural networks</topic><topic>Recovery</topic><topic>Recurrent neural networks</topic><topic>Signal reconstruction</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mohades, Zohreh</creatorcontrib><creatorcontrib>Tabataba Vakili, Vahid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mohades, Zohreh</au><au>Tabataba Vakili, Vahid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Neural Network for Compressive Sensing and Application to Massive MIMO Channel Estimation</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>40</volume><issue>9</issue><spage>4474</spage><epage>4489</epage><pages>4474-4489</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>In this paper, we consider the problem of sparse signal recovery using a learned dictionary in multiple measurement vectors (MMVs) case. Employing deep neural networks, we provide two new greedy algorithms to solve sparse MMV problems. In the first algorithm, we create a stacked vector of measurement matrix columns and a new measurement matrix, which can be assumed as the Kronecker product of the primary compressive sampling matrix and a unitary matrix. In order to reconstruct sparse vector corresponding to this new set of equations, a four-layer feed-forward neural network is applied. In the second algorithm, joint sparse structure of the sparse vectors is considered. Recurrent neural networks are employed to extract the joint sparsity structure. In addition, we utilize an over-complete dictionary obtained from an unsupervised learning procedure. Simulation results illustrate the benefit of using the proposed methods. Finally, the proposed algorithms are applied for pilot-based channel estimation in massive multiple-input multiple-output systems to improve the channel state information recovery performance.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00034-021-01675-z</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3627-0478</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-081X
ispartof Circuits, systems, and signal processing, 2021-09, Vol.40 (9), p.4474-4489
issn 0278-081X
1531-5878
language eng
recordid cdi_proquest_journals_2557918356
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Artificial neural networks
Circuits and Systems
Columns (structural)
Dictionaries
Electrical Engineering
Electronics and Microelectronics
Engineering
Greedy algorithms
Instrumentation
Machine learning
Mathematical analysis
Matrix algebra
Neural networks
Recovery
Recurrent neural networks
Signal reconstruction
Signal,Image and Speech Processing
title Deep Neural Network for Compressive Sensing and Application to Massive MIMO Channel Estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A03%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Neural%20Network%20for%20Compressive%20Sensing%20and%20Application%20to%20Massive%20MIMO%20Channel%20Estimation&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Mohades,%20Zohreh&rft.date=2021-09-01&rft.volume=40&rft.issue=9&rft.spage=4474&rft.epage=4489&rft.pages=4474-4489&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-021-01675-z&rft_dat=%3Cproquest_cross%3E2557918356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557918356&rft_id=info:pmid/&rfr_iscdi=true