The N-level (N ≥ 4) logistic cascade homogenized mapping for image encryption

This paper proposed a chaotic system of N -level logistic cascaded homogenization mapping ( N -LLCHM). The cascade structure of multiple one-dimensional logistic mappings results in an exponential increase in the number of fixed points in the mapping, which greatly increases the initial error diverg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2021-07, Vol.105 (2), p.1911-1935
Hauptverfasser: Bao, Liyong, Tang, Jianchao, Ding, Hongwei, He, Min, Zhao, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1935
container_issue 2
container_start_page 1911
container_title Nonlinear dynamics
container_volume 105
creator Bao, Liyong
Tang, Jianchao
Ding, Hongwei
He, Min
Zhao, Lei
description This paper proposed a chaotic system of N -level logistic cascaded homogenization mapping ( N -LLCHM). The cascade structure of multiple one-dimensional logistic mappings results in an exponential increase in the number of fixed points in the mapping, which greatly increases the initial error divergence of the system during the iteration process, and ultimately increases the complexity of the system to generate time series. In the experiment, the homogenization adjustment function of the mapping is derived according to the maximum entropy theorem. The homogenization adjustment function and the N -level logistic cascade structure are cascaded again to construct a complete dynamics system. The analyses of indicators such as information entropy, Lyapunov exponent, spectral entropy and NIST SP800-22 randomness test reveal that the mapping generates a chaotic time series with good aperiodic and uniform distribution characteristics under the condition that N is greater than or equal to 4. Then, N -LLCHM is used as the core of pseudo-random number generator, and the color image encryption algorithm is constructed by using three steps of pixel bidirectional cross-coding, position scrambling and pixel diffusion as the main system. According to the evaluation of histogram, correlation, information entropy and anti-differential attack test, it is verified that this algorithm has better encryption effect and higher security than the present image encryption algorithms.
doi_str_mv 10.1007/s11071-021-06688-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557918147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557918147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-be3406b58b5cc1feea73dc593edaf8e8fa568ed8b237296f7ad54d8d3e76ad3e3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAkyWWGAw2HFiOyOq-JMqGChSN8txbtJUaRLsFKlMrH0QXqxPgiFIbAz33OWcc68-hE4ZvWSUyivPGJWM0CiMEEoRsYdGLJGcRCKd76MRTaOY0JTOD9GR90tKKY-oGqHn2QLwI6nhDWp8_rj72O62n0HjC1y3ZeX7ymJrvDU54EW7aktoqnfI8cp0XdWUuGgdrlamBAyNdZuur9rmGB0UpvZw8rvH6OX2Zja5J9Onu4fJ9ZRYztKeZMBjKrJEZYm1rAAwkuc2STnkplCgCpMIBbnKIi6jVBTS5Emcq5yDFCYoH6Ozobdz7esafK-X7do14aSOkkSmTLFYBlc0uKxrvXdQ6M6Fj91GM6q_4ekBng7w9A88LUKIDyEfzE0J7q_6n9QXBKZ1dw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557918147</pqid></control><display><type>article</type><title>The N-level (N ≥ 4) logistic cascade homogenized mapping for image encryption</title><source>SpringerLink Journals</source><creator>Bao, Liyong ; Tang, Jianchao ; Ding, Hongwei ; He, Min ; Zhao, Lei</creator><creatorcontrib>Bao, Liyong ; Tang, Jianchao ; Ding, Hongwei ; He, Min ; Zhao, Lei</creatorcontrib><description>This paper proposed a chaotic system of N -level logistic cascaded homogenization mapping ( N -LLCHM). The cascade structure of multiple one-dimensional logistic mappings results in an exponential increase in the number of fixed points in the mapping, which greatly increases the initial error divergence of the system during the iteration process, and ultimately increases the complexity of the system to generate time series. In the experiment, the homogenization adjustment function of the mapping is derived according to the maximum entropy theorem. The homogenization adjustment function and the N -level logistic cascade structure are cascaded again to construct a complete dynamics system. The analyses of indicators such as information entropy, Lyapunov exponent, spectral entropy and NIST SP800-22 randomness test reveal that the mapping generates a chaotic time series with good aperiodic and uniform distribution characteristics under the condition that N is greater than or equal to 4. Then, N -LLCHM is used as the core of pseudo-random number generator, and the color image encryption algorithm is constructed by using three steps of pixel bidirectional cross-coding, position scrambling and pixel diffusion as the main system. According to the evaluation of histogram, correlation, information entropy and anti-differential attack test, it is verified that this algorithm has better encryption effect and higher security than the present image encryption algorithms.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-06688-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Automotive Engineering ; Chaos theory ; Classical Mechanics ; Color imagery ; Control ; Divergence ; Dynamic structural analysis ; Dynamical Systems ; Engineering ; Entropy ; Entropy (Information theory) ; Fixed points (mathematics) ; Histograms ; Homogenization ; Liapunov exponents ; Mapping ; Maximum entropy ; Mechanical Engineering ; Pixels ; Pseudorandom ; Random numbers ; Review ; Time series ; Vibration</subject><ispartof>Nonlinear dynamics, 2021-07, Vol.105 (2), p.1911-1935</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-be3406b58b5cc1feea73dc593edaf8e8fa568ed8b237296f7ad54d8d3e76ad3e3</citedby><cites>FETCH-LOGICAL-c319t-be3406b58b5cc1feea73dc593edaf8e8fa568ed8b237296f7ad54d8d3e76ad3e3</cites><orcidid>0000-0002-7339-3832</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-06688-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-06688-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bao, Liyong</creatorcontrib><creatorcontrib>Tang, Jianchao</creatorcontrib><creatorcontrib>Ding, Hongwei</creatorcontrib><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><title>The N-level (N ≥ 4) logistic cascade homogenized mapping for image encryption</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This paper proposed a chaotic system of N -level logistic cascaded homogenization mapping ( N -LLCHM). The cascade structure of multiple one-dimensional logistic mappings results in an exponential increase in the number of fixed points in the mapping, which greatly increases the initial error divergence of the system during the iteration process, and ultimately increases the complexity of the system to generate time series. In the experiment, the homogenization adjustment function of the mapping is derived according to the maximum entropy theorem. The homogenization adjustment function and the N -level logistic cascade structure are cascaded again to construct a complete dynamics system. The analyses of indicators such as information entropy, Lyapunov exponent, spectral entropy and NIST SP800-22 randomness test reveal that the mapping generates a chaotic time series with good aperiodic and uniform distribution characteristics under the condition that N is greater than or equal to 4. Then, N -LLCHM is used as the core of pseudo-random number generator, and the color image encryption algorithm is constructed by using three steps of pixel bidirectional cross-coding, position scrambling and pixel diffusion as the main system. According to the evaluation of histogram, correlation, information entropy and anti-differential attack test, it is verified that this algorithm has better encryption effect and higher security than the present image encryption algorithms.</description><subject>Algorithms</subject><subject>Automotive Engineering</subject><subject>Chaos theory</subject><subject>Classical Mechanics</subject><subject>Color imagery</subject><subject>Control</subject><subject>Divergence</subject><subject>Dynamic structural analysis</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Entropy</subject><subject>Entropy (Information theory)</subject><subject>Fixed points (mathematics)</subject><subject>Histograms</subject><subject>Homogenization</subject><subject>Liapunov exponents</subject><subject>Mapping</subject><subject>Maximum entropy</subject><subject>Mechanical Engineering</subject><subject>Pixels</subject><subject>Pseudorandom</subject><subject>Random numbers</subject><subject>Review</subject><subject>Time series</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kL1OwzAUhS0EEqXwAkyWWGAw2HFiOyOq-JMqGChSN8txbtJUaRLsFKlMrH0QXqxPgiFIbAz33OWcc68-hE4ZvWSUyivPGJWM0CiMEEoRsYdGLJGcRCKd76MRTaOY0JTOD9GR90tKKY-oGqHn2QLwI6nhDWp8_rj72O62n0HjC1y3ZeX7ymJrvDU54EW7aktoqnfI8cp0XdWUuGgdrlamBAyNdZuur9rmGB0UpvZw8rvH6OX2Zja5J9Onu4fJ9ZRYztKeZMBjKrJEZYm1rAAwkuc2STnkplCgCpMIBbnKIi6jVBTS5Emcq5yDFCYoH6Ozobdz7esafK-X7do14aSOkkSmTLFYBlc0uKxrvXdQ6M6Fj91GM6q_4ekBng7w9A88LUKIDyEfzE0J7q_6n9QXBKZ1dw</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Bao, Liyong</creator><creator>Tang, Jianchao</creator><creator>Ding, Hongwei</creator><creator>He, Min</creator><creator>Zhao, Lei</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-7339-3832</orcidid></search><sort><creationdate>20210701</creationdate><title>The N-level (N ≥ 4) logistic cascade homogenized mapping for image encryption</title><author>Bao, Liyong ; Tang, Jianchao ; Ding, Hongwei ; He, Min ; Zhao, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-be3406b58b5cc1feea73dc593edaf8e8fa568ed8b237296f7ad54d8d3e76ad3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automotive Engineering</topic><topic>Chaos theory</topic><topic>Classical Mechanics</topic><topic>Color imagery</topic><topic>Control</topic><topic>Divergence</topic><topic>Dynamic structural analysis</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Entropy</topic><topic>Entropy (Information theory)</topic><topic>Fixed points (mathematics)</topic><topic>Histograms</topic><topic>Homogenization</topic><topic>Liapunov exponents</topic><topic>Mapping</topic><topic>Maximum entropy</topic><topic>Mechanical Engineering</topic><topic>Pixels</topic><topic>Pseudorandom</topic><topic>Random numbers</topic><topic>Review</topic><topic>Time series</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bao, Liyong</creatorcontrib><creatorcontrib>Tang, Jianchao</creatorcontrib><creatorcontrib>Ding, Hongwei</creatorcontrib><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Zhao, Lei</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bao, Liyong</au><au>Tang, Jianchao</au><au>Ding, Hongwei</au><au>He, Min</au><au>Zhao, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The N-level (N ≥ 4) logistic cascade homogenized mapping for image encryption</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>105</volume><issue>2</issue><spage>1911</spage><epage>1935</epage><pages>1911-1935</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper proposed a chaotic system of N -level logistic cascaded homogenization mapping ( N -LLCHM). The cascade structure of multiple one-dimensional logistic mappings results in an exponential increase in the number of fixed points in the mapping, which greatly increases the initial error divergence of the system during the iteration process, and ultimately increases the complexity of the system to generate time series. In the experiment, the homogenization adjustment function of the mapping is derived according to the maximum entropy theorem. The homogenization adjustment function and the N -level logistic cascade structure are cascaded again to construct a complete dynamics system. The analyses of indicators such as information entropy, Lyapunov exponent, spectral entropy and NIST SP800-22 randomness test reveal that the mapping generates a chaotic time series with good aperiodic and uniform distribution characteristics under the condition that N is greater than or equal to 4. Then, N -LLCHM is used as the core of pseudo-random number generator, and the color image encryption algorithm is constructed by using three steps of pixel bidirectional cross-coding, position scrambling and pixel diffusion as the main system. According to the evaluation of histogram, correlation, information entropy and anti-differential attack test, it is verified that this algorithm has better encryption effect and higher security than the present image encryption algorithms.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-06688-6</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0002-7339-3832</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2021-07, Vol.105 (2), p.1911-1935
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2557918147
source SpringerLink Journals
subjects Algorithms
Automotive Engineering
Chaos theory
Classical Mechanics
Color imagery
Control
Divergence
Dynamic structural analysis
Dynamical Systems
Engineering
Entropy
Entropy (Information theory)
Fixed points (mathematics)
Histograms
Homogenization
Liapunov exponents
Mapping
Maximum entropy
Mechanical Engineering
Pixels
Pseudorandom
Random numbers
Review
Time series
Vibration
title The N-level (N ≥ 4) logistic cascade homogenized mapping for image encryption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T12%3A23%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20N-level%20(N%E2%80%89%E2%89%A5%E2%80%894)%20logistic%20cascade%20homogenized%20mapping%20for%20image%20encryption&rft.jtitle=Nonlinear%20dynamics&rft.au=Bao,%20Liyong&rft.date=2021-07-01&rft.volume=105&rft.issue=2&rft.spage=1911&rft.epage=1935&rft.pages=1911-1935&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-06688-6&rft_dat=%3Cproquest_cross%3E2557918147%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557918147&rft_id=info:pmid/&rfr_iscdi=true