Multi-objective command filtered adaptive control for nonlinear hydraulic active suspension systems
This paper proposes a new multi-objective command filtered adaptive control strategy for the active suspension systems with nonlinear hydraulic actuators. Firstly, command filters are designed to avoid the influences of the explosion of complexity on hydraulic suspension systems. The output of the c...
Gespeichert in:
Veröffentlicht in: | Nonlinear dynamics 2021-07, Vol.105 (2), p.1559-1579 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1579 |
---|---|
container_issue | 2 |
container_start_page | 1559 |
container_title | Nonlinear dynamics |
container_volume | 105 |
creator | Hao, Ruolan Wang, Hongbin Liu, Shuang Yang, Mengke Tian, Zhijian |
description | This paper proposes a new multi-objective command filtered adaptive control strategy for the active suspension systems with nonlinear hydraulic actuators. Firstly, command filters are designed to avoid the influences of the explosion of complexity on hydraulic suspension systems. The output of the command filters replaces the derivatives of virtual control signals to remove the online computational burdens caused by the explosion of complexity in the backstepping technique, which is appropriate for the practical hydraulic suspension systems that the differential coefficients of high-order are difficult to gain. Furthermore, the error compensation signals are designed to eliminate the filtering errors and proved to be bounded. Therefore, the large peaks of the output control forces caused by online computational burdens are eliminated, which means that small control forces can achieve good control results. Then, the ride comfort is improved. The dynamic load ratios and suspension working spaces are proved in small regions, which can guarantee the multi-objective control in nonlinear hydraulic active suspension systems. Finally, the simulation results show the effectiveness of the proposed strategy. |
doi_str_mv | 10.1007/s11071-021-06559-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557913955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557913955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-39c54c3489bc968b6fcf22b7e1082df3eaeef5097181f9c0d40697d12da5350f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0rTNURa_YMWLwt5Cmg_t0iZr0gr77612wZuHYQ7zvO_Ag9AlhWsKUN1kSqGiBNg0pRCSwBFaUFFxwkq5OUYLkKwgIGFzis5y3gIAZ1AvkHkeu6Elsdk6M7RfDpvY9zpY7NtucMlZrK3eHS5hSLHDPiYcYuja4HTCH3ub9Ni1Buu5II9550JuY8B5nwfX53N04nWX3cVhL9Hb_d3r6pGsXx6eVrdrYjiVA-HSiMLwopaNkWXdlN54xprKUaiZ9dxp57wAWdGaemnAFlDKylJmteACPF-iq7l3l-Ln6PKgtnFMYXqpmBCVpFwKMVFspkyKOSfn1S61vU57RUH9yFSzTDXJVL8yFUwhPofyBId3l_6q_0l9A1_AebY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557913955</pqid></control><display><type>article</type><title>Multi-objective command filtered adaptive control for nonlinear hydraulic active suspension systems</title><source>SpringerLink Journals</source><creator>Hao, Ruolan ; Wang, Hongbin ; Liu, Shuang ; Yang, Mengke ; Tian, Zhijian</creator><creatorcontrib>Hao, Ruolan ; Wang, Hongbin ; Liu, Shuang ; Yang, Mengke ; Tian, Zhijian</creatorcontrib><description>This paper proposes a new multi-objective command filtered adaptive control strategy for the active suspension systems with nonlinear hydraulic actuators. Firstly, command filters are designed to avoid the influences of the explosion of complexity on hydraulic suspension systems. The output of the command filters replaces the derivatives of virtual control signals to remove the online computational burdens caused by the explosion of complexity in the backstepping technique, which is appropriate for the practical hydraulic suspension systems that the differential coefficients of high-order are difficult to gain. Furthermore, the error compensation signals are designed to eliminate the filtering errors and proved to be bounded. Therefore, the large peaks of the output control forces caused by online computational burdens are eliminated, which means that small control forces can achieve good control results. Then, the ride comfort is improved. The dynamic load ratios and suspension working spaces are proved in small regions, which can guarantee the multi-objective control in nonlinear hydraulic active suspension systems. Finally, the simulation results show the effectiveness of the proposed strategy.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-06559-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Active control ; Actuators ; Adaptive control ; Automotive Engineering ; Classical Mechanics ; Complexity ; Control ; Dynamic loads ; Dynamical Systems ; Engineering ; Error compensation ; Fluid filters ; Hydraulic equipment ; Hydraulics ; Mechanical Engineering ; Multiple objective analysis ; Nonlinear control ; Nonlinear systems ; Original Paper ; Passenger comfort ; Suspension systems ; System effectiveness ; Vibration</subject><ispartof>Nonlinear dynamics, 2021-07, Vol.105 (2), p.1559-1579</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-39c54c3489bc968b6fcf22b7e1082df3eaeef5097181f9c0d40697d12da5350f3</citedby><cites>FETCH-LOGICAL-c319t-39c54c3489bc968b6fcf22b7e1082df3eaeef5097181f9c0d40697d12da5350f3</cites><orcidid>0000-0003-4073-1409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-06559-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-06559-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hao, Ruolan</creatorcontrib><creatorcontrib>Wang, Hongbin</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Yang, Mengke</creatorcontrib><creatorcontrib>Tian, Zhijian</creatorcontrib><title>Multi-objective command filtered adaptive control for nonlinear hydraulic active suspension systems</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This paper proposes a new multi-objective command filtered adaptive control strategy for the active suspension systems with nonlinear hydraulic actuators. Firstly, command filters are designed to avoid the influences of the explosion of complexity on hydraulic suspension systems. The output of the command filters replaces the derivatives of virtual control signals to remove the online computational burdens caused by the explosion of complexity in the backstepping technique, which is appropriate for the practical hydraulic suspension systems that the differential coefficients of high-order are difficult to gain. Furthermore, the error compensation signals are designed to eliminate the filtering errors and proved to be bounded. Therefore, the large peaks of the output control forces caused by online computational burdens are eliminated, which means that small control forces can achieve good control results. Then, the ride comfort is improved. The dynamic load ratios and suspension working spaces are proved in small regions, which can guarantee the multi-objective control in nonlinear hydraulic active suspension systems. Finally, the simulation results show the effectiveness of the proposed strategy.</description><subject>Active control</subject><subject>Actuators</subject><subject>Adaptive control</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Complexity</subject><subject>Control</subject><subject>Dynamic loads</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Error compensation</subject><subject>Fluid filters</subject><subject>Hydraulic equipment</subject><subject>Hydraulics</subject><subject>Mechanical Engineering</subject><subject>Multiple objective analysis</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Original Paper</subject><subject>Passenger comfort</subject><subject>Suspension systems</subject><subject>System effectiveness</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0rTNURa_YMWLwt5Cmg_t0iZr0gr77612wZuHYQ7zvO_Ag9AlhWsKUN1kSqGiBNg0pRCSwBFaUFFxwkq5OUYLkKwgIGFzis5y3gIAZ1AvkHkeu6Elsdk6M7RfDpvY9zpY7NtucMlZrK3eHS5hSLHDPiYcYuja4HTCH3ub9Ni1Buu5II9550JuY8B5nwfX53N04nWX3cVhL9Hb_d3r6pGsXx6eVrdrYjiVA-HSiMLwopaNkWXdlN54xprKUaiZ9dxp57wAWdGaemnAFlDKylJmteACPF-iq7l3l-Ln6PKgtnFMYXqpmBCVpFwKMVFspkyKOSfn1S61vU57RUH9yFSzTDXJVL8yFUwhPofyBId3l_6q_0l9A1_AebY</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Hao, Ruolan</creator><creator>Wang, Hongbin</creator><creator>Liu, Shuang</creator><creator>Yang, Mengke</creator><creator>Tian, Zhijian</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4073-1409</orcidid></search><sort><creationdate>20210701</creationdate><title>Multi-objective command filtered adaptive control for nonlinear hydraulic active suspension systems</title><author>Hao, Ruolan ; Wang, Hongbin ; Liu, Shuang ; Yang, Mengke ; Tian, Zhijian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-39c54c3489bc968b6fcf22b7e1082df3eaeef5097181f9c0d40697d12da5350f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>Actuators</topic><topic>Adaptive control</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Complexity</topic><topic>Control</topic><topic>Dynamic loads</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Error compensation</topic><topic>Fluid filters</topic><topic>Hydraulic equipment</topic><topic>Hydraulics</topic><topic>Mechanical Engineering</topic><topic>Multiple objective analysis</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Original Paper</topic><topic>Passenger comfort</topic><topic>Suspension systems</topic><topic>System effectiveness</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Ruolan</creatorcontrib><creatorcontrib>Wang, Hongbin</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Yang, Mengke</creatorcontrib><creatorcontrib>Tian, Zhijian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Ruolan</au><au>Wang, Hongbin</au><au>Liu, Shuang</au><au>Yang, Mengke</au><au>Tian, Zhijian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective command filtered adaptive control for nonlinear hydraulic active suspension systems</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>105</volume><issue>2</issue><spage>1559</spage><epage>1579</epage><pages>1559-1579</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper proposes a new multi-objective command filtered adaptive control strategy for the active suspension systems with nonlinear hydraulic actuators. Firstly, command filters are designed to avoid the influences of the explosion of complexity on hydraulic suspension systems. The output of the command filters replaces the derivatives of virtual control signals to remove the online computational burdens caused by the explosion of complexity in the backstepping technique, which is appropriate for the practical hydraulic suspension systems that the differential coefficients of high-order are difficult to gain. Furthermore, the error compensation signals are designed to eliminate the filtering errors and proved to be bounded. Therefore, the large peaks of the output control forces caused by online computational burdens are eliminated, which means that small control forces can achieve good control results. Then, the ride comfort is improved. The dynamic load ratios and suspension working spaces are proved in small regions, which can guarantee the multi-objective control in nonlinear hydraulic active suspension systems. Finally, the simulation results show the effectiveness of the proposed strategy.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-06559-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4073-1409</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-090X |
ispartof | Nonlinear dynamics, 2021-07, Vol.105 (2), p.1559-1579 |
issn | 0924-090X 1573-269X |
language | eng |
recordid | cdi_proquest_journals_2557913955 |
source | SpringerLink Journals |
subjects | Active control Actuators Adaptive control Automotive Engineering Classical Mechanics Complexity Control Dynamic loads Dynamical Systems Engineering Error compensation Fluid filters Hydraulic equipment Hydraulics Mechanical Engineering Multiple objective analysis Nonlinear control Nonlinear systems Original Paper Passenger comfort Suspension systems System effectiveness Vibration |
title | Multi-objective command filtered adaptive control for nonlinear hydraulic active suspension systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20command%20filtered%20adaptive%20control%20for%20nonlinear%20hydraulic%20active%20suspension%20systems&rft.jtitle=Nonlinear%20dynamics&rft.au=Hao,%20Ruolan&rft.date=2021-07-01&rft.volume=105&rft.issue=2&rft.spage=1559&rft.epage=1579&rft.pages=1559-1579&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-06559-0&rft_dat=%3Cproquest_cross%3E2557913955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557913955&rft_id=info:pmid/&rfr_iscdi=true |