Multi-objective command filtered adaptive control for nonlinear hydraulic active suspension systems

This paper proposes a new multi-objective command filtered adaptive control strategy for the active suspension systems with nonlinear hydraulic actuators. Firstly, command filters are designed to avoid the influences of the explosion of complexity on hydraulic suspension systems. The output of the c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear dynamics 2021-07, Vol.105 (2), p.1559-1579
Hauptverfasser: Hao, Ruolan, Wang, Hongbin, Liu, Shuang, Yang, Mengke, Tian, Zhijian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1579
container_issue 2
container_start_page 1559
container_title Nonlinear dynamics
container_volume 105
creator Hao, Ruolan
Wang, Hongbin
Liu, Shuang
Yang, Mengke
Tian, Zhijian
description This paper proposes a new multi-objective command filtered adaptive control strategy for the active suspension systems with nonlinear hydraulic actuators. Firstly, command filters are designed to avoid the influences of the explosion of complexity on hydraulic suspension systems. The output of the command filters replaces the derivatives of virtual control signals to remove the online computational burdens caused by the explosion of complexity in the backstepping technique, which is appropriate for the practical hydraulic suspension systems that the differential coefficients of high-order are difficult to gain. Furthermore, the error compensation signals are designed to eliminate the filtering errors and proved to be bounded. Therefore, the large peaks of the output control forces caused by online computational burdens are eliminated, which means that small control forces can achieve good control results. Then, the ride comfort is improved. The dynamic load ratios and suspension working spaces are proved in small regions, which can guarantee the multi-objective control in nonlinear hydraulic active suspension systems. Finally, the simulation results show the effectiveness of the proposed strategy.
doi_str_mv 10.1007/s11071-021-06559-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557913955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557913955</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-39c54c3489bc968b6fcf22b7e1082df3eaeef5097181f9c0d40697d12da5350f3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0rTNURa_YMWLwt5Cmg_t0iZr0gr77612wZuHYQ7zvO_Ag9AlhWsKUN1kSqGiBNg0pRCSwBFaUFFxwkq5OUYLkKwgIGFzis5y3gIAZ1AvkHkeu6Elsdk6M7RfDpvY9zpY7NtucMlZrK3eHS5hSLHDPiYcYuja4HTCH3ub9Ni1Buu5II9550JuY8B5nwfX53N04nWX3cVhL9Hb_d3r6pGsXx6eVrdrYjiVA-HSiMLwopaNkWXdlN54xprKUaiZ9dxp57wAWdGaemnAFlDKylJmteACPF-iq7l3l-Ln6PKgtnFMYXqpmBCVpFwKMVFspkyKOSfn1S61vU57RUH9yFSzTDXJVL8yFUwhPofyBId3l_6q_0l9A1_AebY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557913955</pqid></control><display><type>article</type><title>Multi-objective command filtered adaptive control for nonlinear hydraulic active suspension systems</title><source>SpringerLink Journals</source><creator>Hao, Ruolan ; Wang, Hongbin ; Liu, Shuang ; Yang, Mengke ; Tian, Zhijian</creator><creatorcontrib>Hao, Ruolan ; Wang, Hongbin ; Liu, Shuang ; Yang, Mengke ; Tian, Zhijian</creatorcontrib><description>This paper proposes a new multi-objective command filtered adaptive control strategy for the active suspension systems with nonlinear hydraulic actuators. Firstly, command filters are designed to avoid the influences of the explosion of complexity on hydraulic suspension systems. The output of the command filters replaces the derivatives of virtual control signals to remove the online computational burdens caused by the explosion of complexity in the backstepping technique, which is appropriate for the practical hydraulic suspension systems that the differential coefficients of high-order are difficult to gain. Furthermore, the error compensation signals are designed to eliminate the filtering errors and proved to be bounded. Therefore, the large peaks of the output control forces caused by online computational burdens are eliminated, which means that small control forces can achieve good control results. Then, the ride comfort is improved. The dynamic load ratios and suspension working spaces are proved in small regions, which can guarantee the multi-objective control in nonlinear hydraulic active suspension systems. Finally, the simulation results show the effectiveness of the proposed strategy.</description><identifier>ISSN: 0924-090X</identifier><identifier>EISSN: 1573-269X</identifier><identifier>DOI: 10.1007/s11071-021-06559-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Active control ; Actuators ; Adaptive control ; Automotive Engineering ; Classical Mechanics ; Complexity ; Control ; Dynamic loads ; Dynamical Systems ; Engineering ; Error compensation ; Fluid filters ; Hydraulic equipment ; Hydraulics ; Mechanical Engineering ; Multiple objective analysis ; Nonlinear control ; Nonlinear systems ; Original Paper ; Passenger comfort ; Suspension systems ; System effectiveness ; Vibration</subject><ispartof>Nonlinear dynamics, 2021-07, Vol.105 (2), p.1559-1579</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-39c54c3489bc968b6fcf22b7e1082df3eaeef5097181f9c0d40697d12da5350f3</citedby><cites>FETCH-LOGICAL-c319t-39c54c3489bc968b6fcf22b7e1082df3eaeef5097181f9c0d40697d12da5350f3</cites><orcidid>0000-0003-4073-1409</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11071-021-06559-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11071-021-06559-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hao, Ruolan</creatorcontrib><creatorcontrib>Wang, Hongbin</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Yang, Mengke</creatorcontrib><creatorcontrib>Tian, Zhijian</creatorcontrib><title>Multi-objective command filtered adaptive control for nonlinear hydraulic active suspension systems</title><title>Nonlinear dynamics</title><addtitle>Nonlinear Dyn</addtitle><description>This paper proposes a new multi-objective command filtered adaptive control strategy for the active suspension systems with nonlinear hydraulic actuators. Firstly, command filters are designed to avoid the influences of the explosion of complexity on hydraulic suspension systems. The output of the command filters replaces the derivatives of virtual control signals to remove the online computational burdens caused by the explosion of complexity in the backstepping technique, which is appropriate for the practical hydraulic suspension systems that the differential coefficients of high-order are difficult to gain. Furthermore, the error compensation signals are designed to eliminate the filtering errors and proved to be bounded. Therefore, the large peaks of the output control forces caused by online computational burdens are eliminated, which means that small control forces can achieve good control results. Then, the ride comfort is improved. The dynamic load ratios and suspension working spaces are proved in small regions, which can guarantee the multi-objective control in nonlinear hydraulic active suspension systems. Finally, the simulation results show the effectiveness of the proposed strategy.</description><subject>Active control</subject><subject>Actuators</subject><subject>Adaptive control</subject><subject>Automotive Engineering</subject><subject>Classical Mechanics</subject><subject>Complexity</subject><subject>Control</subject><subject>Dynamic loads</subject><subject>Dynamical Systems</subject><subject>Engineering</subject><subject>Error compensation</subject><subject>Fluid filters</subject><subject>Hydraulic equipment</subject><subject>Hydraulics</subject><subject>Mechanical Engineering</subject><subject>Multiple objective analysis</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Original Paper</subject><subject>Passenger comfort</subject><subject>Suspension systems</subject><subject>System effectiveness</subject><subject>Vibration</subject><issn>0924-090X</issn><issn>1573-269X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kE1LxDAQhoMouK7-AU8Bz9FJ0rTNURa_YMWLwt5Cmg_t0iZr0gr77612wZuHYQ7zvO_Ag9AlhWsKUN1kSqGiBNg0pRCSwBFaUFFxwkq5OUYLkKwgIGFzis5y3gIAZ1AvkHkeu6Elsdk6M7RfDpvY9zpY7NtucMlZrK3eHS5hSLHDPiYcYuja4HTCH3ub9Ni1Buu5II9550JuY8B5nwfX53N04nWX3cVhL9Hb_d3r6pGsXx6eVrdrYjiVA-HSiMLwopaNkWXdlN54xprKUaiZ9dxp57wAWdGaemnAFlDKylJmteACPF-iq7l3l-Ln6PKgtnFMYXqpmBCVpFwKMVFspkyKOSfn1S61vU57RUH9yFSzTDXJVL8yFUwhPofyBId3l_6q_0l9A1_AebY</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Hao, Ruolan</creator><creator>Wang, Hongbin</creator><creator>Liu, Shuang</creator><creator>Yang, Mengke</creator><creator>Tian, Zhijian</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-4073-1409</orcidid></search><sort><creationdate>20210701</creationdate><title>Multi-objective command filtered adaptive control for nonlinear hydraulic active suspension systems</title><author>Hao, Ruolan ; Wang, Hongbin ; Liu, Shuang ; Yang, Mengke ; Tian, Zhijian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-39c54c3489bc968b6fcf22b7e1082df3eaeef5097181f9c0d40697d12da5350f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Active control</topic><topic>Actuators</topic><topic>Adaptive control</topic><topic>Automotive Engineering</topic><topic>Classical Mechanics</topic><topic>Complexity</topic><topic>Control</topic><topic>Dynamic loads</topic><topic>Dynamical Systems</topic><topic>Engineering</topic><topic>Error compensation</topic><topic>Fluid filters</topic><topic>Hydraulic equipment</topic><topic>Hydraulics</topic><topic>Mechanical Engineering</topic><topic>Multiple objective analysis</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Original Paper</topic><topic>Passenger comfort</topic><topic>Suspension systems</topic><topic>System effectiveness</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hao, Ruolan</creatorcontrib><creatorcontrib>Wang, Hongbin</creatorcontrib><creatorcontrib>Liu, Shuang</creatorcontrib><creatorcontrib>Yang, Mengke</creatorcontrib><creatorcontrib>Tian, Zhijian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Nonlinear dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hao, Ruolan</au><au>Wang, Hongbin</au><au>Liu, Shuang</au><au>Yang, Mengke</au><au>Tian, Zhijian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-objective command filtered adaptive control for nonlinear hydraulic active suspension systems</atitle><jtitle>Nonlinear dynamics</jtitle><stitle>Nonlinear Dyn</stitle><date>2021-07-01</date><risdate>2021</risdate><volume>105</volume><issue>2</issue><spage>1559</spage><epage>1579</epage><pages>1559-1579</pages><issn>0924-090X</issn><eissn>1573-269X</eissn><abstract>This paper proposes a new multi-objective command filtered adaptive control strategy for the active suspension systems with nonlinear hydraulic actuators. Firstly, command filters are designed to avoid the influences of the explosion of complexity on hydraulic suspension systems. The output of the command filters replaces the derivatives of virtual control signals to remove the online computational burdens caused by the explosion of complexity in the backstepping technique, which is appropriate for the practical hydraulic suspension systems that the differential coefficients of high-order are difficult to gain. Furthermore, the error compensation signals are designed to eliminate the filtering errors and proved to be bounded. Therefore, the large peaks of the output control forces caused by online computational burdens are eliminated, which means that small control forces can achieve good control results. Then, the ride comfort is improved. The dynamic load ratios and suspension working spaces are proved in small regions, which can guarantee the multi-objective control in nonlinear hydraulic active suspension systems. Finally, the simulation results show the effectiveness of the proposed strategy.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11071-021-06559-0</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-4073-1409</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0924-090X
ispartof Nonlinear dynamics, 2021-07, Vol.105 (2), p.1559-1579
issn 0924-090X
1573-269X
language eng
recordid cdi_proquest_journals_2557913955
source SpringerLink Journals
subjects Active control
Actuators
Adaptive control
Automotive Engineering
Classical Mechanics
Complexity
Control
Dynamic loads
Dynamical Systems
Engineering
Error compensation
Fluid filters
Hydraulic equipment
Hydraulics
Mechanical Engineering
Multiple objective analysis
Nonlinear control
Nonlinear systems
Original Paper
Passenger comfort
Suspension systems
System effectiveness
Vibration
title Multi-objective command filtered adaptive control for nonlinear hydraulic active suspension systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A13%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-objective%20command%20filtered%20adaptive%20control%20for%20nonlinear%20hydraulic%20active%20suspension%20systems&rft.jtitle=Nonlinear%20dynamics&rft.au=Hao,%20Ruolan&rft.date=2021-07-01&rft.volume=105&rft.issue=2&rft.spage=1559&rft.epage=1579&rft.pages=1559-1579&rft.issn=0924-090X&rft.eissn=1573-269X&rft_id=info:doi/10.1007/s11071-021-06559-0&rft_dat=%3Cproquest_cross%3E2557913955%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557913955&rft_id=info:pmid/&rfr_iscdi=true