Ultrahigh Thermoelectric Performance in Environmentally Friendly SnTe Achieved through Stress‐Induced Lotus‐Seedpod‐Like Grain Boundaries

In an effort to improve the thermoelectric performance of the environmentally friendly SnTe, here, a multilevel structure composed of “lotus‐seedpod‐like” grain boundaries, dense dislocations, and nanopores is innovatively constructed, which synergistically reduces the sound velocity and the phonon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2021-08, Vol.31 (31), p.n/a
Hauptverfasser: Guo, Fengkai, Cui, Bo, Li, Chun, Wang, Yumei, Cao, Jian, Zhang, Xinghong, Ren, Zhifeng, Cai, Wei, Sui, Jiehe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 31
container_start_page
container_title Advanced functional materials
container_volume 31
creator Guo, Fengkai
Cui, Bo
Li, Chun
Wang, Yumei
Cao, Jian
Zhang, Xinghong
Ren, Zhifeng
Cai, Wei
Sui, Jiehe
description In an effort to improve the thermoelectric performance of the environmentally friendly SnTe, here, a multilevel structure composed of “lotus‐seedpod‐like” grain boundaries, dense dislocations, and nanopores is innovatively constructed, which synergistically reduces the sound velocity and the phonon relaxation time, resulting in ultralow lattice thermal conductivity throughout a wide temperature range. An ultrahigh figure of merit, ZT, of ≈1.7 and an unprecedented average ZT of ≈1 from 300 to 873 K are obtained. In contrast to the common pore‐forming method of volatilization, the strategy of stress‐induced recrystallization and gas expansion cogenerating interfacial pores that is used here, is believed to be more widely applicable for many other materials, which opens up a new avenue for improving thermoelectric performance. A “lotus‐seedpod‐like” grain boundary is constructed utilizing stress‐induced recystallization and trapped gas expansion in Mn‐doped SnTe. This structure decouples the transmission of charge carriers and phonons. A superhigh ZT of ≈1.7 at 873 K and a record ZTave of ≈1 between 300 and 873 K are realized.
doi_str_mv 10.1002/adfm.202101554
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557887466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557887466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-6967e5655a729ecff049a539b82d3b3f6512c760563fa44465999927f8759fe23</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEuXnyjkS5xbbie3kWAotSEUgtZW4Ra6zJobELnZS1BtvAM_Ik-CqCI7sZcfyzLfSRNEZRgOMELkQpWoGBBGMMKXpXtTDDLN-gki2_6vx42F05P0zQpjzJO1FH4u6daLST1U8r8A1FmqQrdMyfgCnrGuEkRBrE1-btXbWNGBaUdebeOw0mDKImZlDPJSVhjWUcVs52wXYrHXg_df7560pOxk-prbttu8ZQLmyZVBT_QLxxIkAv7SdKUUg-pPoQInaw-nPPo4W4-v56KY_vZ_cjobTvkwwT_ssZxwoo1RwkoNUCqW5oEm-zEiZLBPFKCaSM0RZokSapozmYQhXGae5ApIcR-c77srZ1w58WzzbzplwsiCU8izjKWPBNdi5pLPeO1DFyulGuE2BUbEtvdiWXvyWHgL5LvCma9j84y6GV-O7v-w3QbmKtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557887466</pqid></control><display><type>article</type><title>Ultrahigh Thermoelectric Performance in Environmentally Friendly SnTe Achieved through Stress‐Induced Lotus‐Seedpod‐Like Grain Boundaries</title><source>Access via Wiley Online Library</source><creator>Guo, Fengkai ; Cui, Bo ; Li, Chun ; Wang, Yumei ; Cao, Jian ; Zhang, Xinghong ; Ren, Zhifeng ; Cai, Wei ; Sui, Jiehe</creator><creatorcontrib>Guo, Fengkai ; Cui, Bo ; Li, Chun ; Wang, Yumei ; Cao, Jian ; Zhang, Xinghong ; Ren, Zhifeng ; Cai, Wei ; Sui, Jiehe</creatorcontrib><description>In an effort to improve the thermoelectric performance of the environmentally friendly SnTe, here, a multilevel structure composed of “lotus‐seedpod‐like” grain boundaries, dense dislocations, and nanopores is innovatively constructed, which synergistically reduces the sound velocity and the phonon relaxation time, resulting in ultralow lattice thermal conductivity throughout a wide temperature range. An ultrahigh figure of merit, ZT, of ≈1.7 and an unprecedented average ZT of ≈1 from 300 to 873 K are obtained. In contrast to the common pore‐forming method of volatilization, the strategy of stress‐induced recrystallization and gas expansion cogenerating interfacial pores that is used here, is believed to be more widely applicable for many other materials, which opens up a new avenue for improving thermoelectric performance. A “lotus‐seedpod‐like” grain boundary is constructed utilizing stress‐induced recystallization and trapped gas expansion in Mn‐doped SnTe. This structure decouples the transmission of charge carriers and phonons. A superhigh ZT of ≈1.7 at 873 K and a record ZTave of ≈1 between 300 and 873 K are realized.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202101554</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Acoustic velocity ; dislocation ; Dislocation density ; Figure of merit ; Gas expansion ; Grain boundaries ; Materials science ; pores ; Recrystallization ; Relaxation time ; SnTe ; Thermal conductivity ; Thermoelectricity ; thermoelectrics</subject><ispartof>Advanced functional materials, 2021-08, Vol.31 (31), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-6967e5655a729ecff049a539b82d3b3f6512c760563fa44465999927f8759fe23</citedby><cites>FETCH-LOGICAL-c3174-6967e5655a729ecff049a539b82d3b3f6512c760563fa44465999927f8759fe23</cites><orcidid>0000-0003-4906-9183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202101554$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202101554$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Guo, Fengkai</creatorcontrib><creatorcontrib>Cui, Bo</creatorcontrib><creatorcontrib>Li, Chun</creatorcontrib><creatorcontrib>Wang, Yumei</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Zhang, Xinghong</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Sui, Jiehe</creatorcontrib><title>Ultrahigh Thermoelectric Performance in Environmentally Friendly SnTe Achieved through Stress‐Induced Lotus‐Seedpod‐Like Grain Boundaries</title><title>Advanced functional materials</title><description>In an effort to improve the thermoelectric performance of the environmentally friendly SnTe, here, a multilevel structure composed of “lotus‐seedpod‐like” grain boundaries, dense dislocations, and nanopores is innovatively constructed, which synergistically reduces the sound velocity and the phonon relaxation time, resulting in ultralow lattice thermal conductivity throughout a wide temperature range. An ultrahigh figure of merit, ZT, of ≈1.7 and an unprecedented average ZT of ≈1 from 300 to 873 K are obtained. In contrast to the common pore‐forming method of volatilization, the strategy of stress‐induced recrystallization and gas expansion cogenerating interfacial pores that is used here, is believed to be more widely applicable for many other materials, which opens up a new avenue for improving thermoelectric performance. A “lotus‐seedpod‐like” grain boundary is constructed utilizing stress‐induced recystallization and trapped gas expansion in Mn‐doped SnTe. This structure decouples the transmission of charge carriers and phonons. A superhigh ZT of ≈1.7 at 873 K and a record ZTave of ≈1 between 300 and 873 K are realized.</description><subject>Acoustic velocity</subject><subject>dislocation</subject><subject>Dislocation density</subject><subject>Figure of merit</subject><subject>Gas expansion</subject><subject>Grain boundaries</subject><subject>Materials science</subject><subject>pores</subject><subject>Recrystallization</subject><subject>Relaxation time</subject><subject>SnTe</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>thermoelectrics</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEuXnyjkS5xbbie3kWAotSEUgtZW4Ra6zJobELnZS1BtvAM_Ik-CqCI7sZcfyzLfSRNEZRgOMELkQpWoGBBGMMKXpXtTDDLN-gki2_6vx42F05P0zQpjzJO1FH4u6daLST1U8r8A1FmqQrdMyfgCnrGuEkRBrE1-btXbWNGBaUdebeOw0mDKImZlDPJSVhjWUcVs52wXYrHXg_df7560pOxk-prbttu8ZQLmyZVBT_QLxxIkAv7SdKUUg-pPoQInaw-nPPo4W4-v56KY_vZ_cjobTvkwwT_ssZxwoo1RwkoNUCqW5oEm-zEiZLBPFKCaSM0RZokSapozmYQhXGae5ApIcR-c77srZ1w58WzzbzplwsiCU8izjKWPBNdi5pLPeO1DFyulGuE2BUbEtvdiWXvyWHgL5LvCma9j84y6GV-O7v-w3QbmKtg</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Guo, Fengkai</creator><creator>Cui, Bo</creator><creator>Li, Chun</creator><creator>Wang, Yumei</creator><creator>Cao, Jian</creator><creator>Zhang, Xinghong</creator><creator>Ren, Zhifeng</creator><creator>Cai, Wei</creator><creator>Sui, Jiehe</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4906-9183</orcidid></search><sort><creationdate>20210801</creationdate><title>Ultrahigh Thermoelectric Performance in Environmentally Friendly SnTe Achieved through Stress‐Induced Lotus‐Seedpod‐Like Grain Boundaries</title><author>Guo, Fengkai ; Cui, Bo ; Li, Chun ; Wang, Yumei ; Cao, Jian ; Zhang, Xinghong ; Ren, Zhifeng ; Cai, Wei ; Sui, Jiehe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-6967e5655a729ecff049a539b82d3b3f6512c760563fa44465999927f8759fe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic velocity</topic><topic>dislocation</topic><topic>Dislocation density</topic><topic>Figure of merit</topic><topic>Gas expansion</topic><topic>Grain boundaries</topic><topic>Materials science</topic><topic>pores</topic><topic>Recrystallization</topic><topic>Relaxation time</topic><topic>SnTe</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>thermoelectrics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Fengkai</creatorcontrib><creatorcontrib>Cui, Bo</creatorcontrib><creatorcontrib>Li, Chun</creatorcontrib><creatorcontrib>Wang, Yumei</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Zhang, Xinghong</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Sui, Jiehe</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Fengkai</au><au>Cui, Bo</au><au>Li, Chun</au><au>Wang, Yumei</au><au>Cao, Jian</au><au>Zhang, Xinghong</au><au>Ren, Zhifeng</au><au>Cai, Wei</au><au>Sui, Jiehe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh Thermoelectric Performance in Environmentally Friendly SnTe Achieved through Stress‐Induced Lotus‐Seedpod‐Like Grain Boundaries</atitle><jtitle>Advanced functional materials</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>31</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>In an effort to improve the thermoelectric performance of the environmentally friendly SnTe, here, a multilevel structure composed of “lotus‐seedpod‐like” grain boundaries, dense dislocations, and nanopores is innovatively constructed, which synergistically reduces the sound velocity and the phonon relaxation time, resulting in ultralow lattice thermal conductivity throughout a wide temperature range. An ultrahigh figure of merit, ZT, of ≈1.7 and an unprecedented average ZT of ≈1 from 300 to 873 K are obtained. In contrast to the common pore‐forming method of volatilization, the strategy of stress‐induced recrystallization and gas expansion cogenerating interfacial pores that is used here, is believed to be more widely applicable for many other materials, which opens up a new avenue for improving thermoelectric performance. A “lotus‐seedpod‐like” grain boundary is constructed utilizing stress‐induced recystallization and trapped gas expansion in Mn‐doped SnTe. This structure decouples the transmission of charge carriers and phonons. A superhigh ZT of ≈1.7 at 873 K and a record ZTave of ≈1 between 300 and 873 K are realized.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202101554</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4906-9183</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2021-08, Vol.31 (31), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2557887466
source Access via Wiley Online Library
subjects Acoustic velocity
dislocation
Dislocation density
Figure of merit
Gas expansion
Grain boundaries
Materials science
pores
Recrystallization
Relaxation time
SnTe
Thermal conductivity
Thermoelectricity
thermoelectrics
title Ultrahigh Thermoelectric Performance in Environmentally Friendly SnTe Achieved through Stress‐Induced Lotus‐Seedpod‐Like Grain Boundaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh%20Thermoelectric%20Performance%20in%20Environmentally%20Friendly%20SnTe%20Achieved%20through%20Stress%E2%80%90Induced%20Lotus%E2%80%90Seedpod%E2%80%90Like%20Grain%20Boundaries&rft.jtitle=Advanced%20functional%20materials&rft.au=Guo,%20Fengkai&rft.date=2021-08-01&rft.volume=31&rft.issue=31&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202101554&rft_dat=%3Cproquest_cross%3E2557887466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557887466&rft_id=info:pmid/&rfr_iscdi=true