Ultrahigh Thermoelectric Performance in Environmentally Friendly SnTe Achieved through Stress‐Induced Lotus‐Seedpod‐Like Grain Boundaries
In an effort to improve the thermoelectric performance of the environmentally friendly SnTe, here, a multilevel structure composed of “lotus‐seedpod‐like” grain boundaries, dense dislocations, and nanopores is innovatively constructed, which synergistically reduces the sound velocity and the phonon...
Gespeichert in:
Veröffentlicht in: | Advanced functional materials 2021-08, Vol.31 (31), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 31 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 31 |
creator | Guo, Fengkai Cui, Bo Li, Chun Wang, Yumei Cao, Jian Zhang, Xinghong Ren, Zhifeng Cai, Wei Sui, Jiehe |
description | In an effort to improve the thermoelectric performance of the environmentally friendly SnTe, here, a multilevel structure composed of “lotus‐seedpod‐like” grain boundaries, dense dislocations, and nanopores is innovatively constructed, which synergistically reduces the sound velocity and the phonon relaxation time, resulting in ultralow lattice thermal conductivity throughout a wide temperature range. An ultrahigh figure of merit, ZT, of ≈1.7 and an unprecedented average ZT of ≈1 from 300 to 873 K are obtained. In contrast to the common pore‐forming method of volatilization, the strategy of stress‐induced recrystallization and gas expansion cogenerating interfacial pores that is used here, is believed to be more widely applicable for many other materials, which opens up a new avenue for improving thermoelectric performance.
A “lotus‐seedpod‐like” grain boundary is constructed utilizing stress‐induced recystallization and trapped gas expansion in Mn‐doped SnTe. This structure decouples the transmission of charge carriers and phonons. A superhigh ZT of ≈1.7 at 873 K and a record ZTave of ≈1 between 300 and 873 K are realized. |
doi_str_mv | 10.1002/adfm.202101554 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2557887466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557887466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3174-6967e5655a729ecff049a539b82d3b3f6512c760563fa44465999927f8759fe23</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEuXnyjkS5xbbie3kWAotSEUgtZW4Ra6zJobELnZS1BtvAM_Ik-CqCI7sZcfyzLfSRNEZRgOMELkQpWoGBBGMMKXpXtTDDLN-gki2_6vx42F05P0zQpjzJO1FH4u6daLST1U8r8A1FmqQrdMyfgCnrGuEkRBrE1-btXbWNGBaUdebeOw0mDKImZlDPJSVhjWUcVs52wXYrHXg_df7560pOxk-prbttu8ZQLmyZVBT_QLxxIkAv7SdKUUg-pPoQInaw-nPPo4W4-v56KY_vZ_cjobTvkwwT_ssZxwoo1RwkoNUCqW5oEm-zEiZLBPFKCaSM0RZokSapozmYQhXGae5ApIcR-c77srZ1w58WzzbzplwsiCU8izjKWPBNdi5pLPeO1DFyulGuE2BUbEtvdiWXvyWHgL5LvCma9j84y6GV-O7v-w3QbmKtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557887466</pqid></control><display><type>article</type><title>Ultrahigh Thermoelectric Performance in Environmentally Friendly SnTe Achieved through Stress‐Induced Lotus‐Seedpod‐Like Grain Boundaries</title><source>Access via Wiley Online Library</source><creator>Guo, Fengkai ; Cui, Bo ; Li, Chun ; Wang, Yumei ; Cao, Jian ; Zhang, Xinghong ; Ren, Zhifeng ; Cai, Wei ; Sui, Jiehe</creator><creatorcontrib>Guo, Fengkai ; Cui, Bo ; Li, Chun ; Wang, Yumei ; Cao, Jian ; Zhang, Xinghong ; Ren, Zhifeng ; Cai, Wei ; Sui, Jiehe</creatorcontrib><description>In an effort to improve the thermoelectric performance of the environmentally friendly SnTe, here, a multilevel structure composed of “lotus‐seedpod‐like” grain boundaries, dense dislocations, and nanopores is innovatively constructed, which synergistically reduces the sound velocity and the phonon relaxation time, resulting in ultralow lattice thermal conductivity throughout a wide temperature range. An ultrahigh figure of merit, ZT, of ≈1.7 and an unprecedented average ZT of ≈1 from 300 to 873 K are obtained. In contrast to the common pore‐forming method of volatilization, the strategy of stress‐induced recrystallization and gas expansion cogenerating interfacial pores that is used here, is believed to be more widely applicable for many other materials, which opens up a new avenue for improving thermoelectric performance.
A “lotus‐seedpod‐like” grain boundary is constructed utilizing stress‐induced recystallization and trapped gas expansion in Mn‐doped SnTe. This structure decouples the transmission of charge carriers and phonons. A superhigh ZT of ≈1.7 at 873 K and a record ZTave of ≈1 between 300 and 873 K are realized.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202101554</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Acoustic velocity ; dislocation ; Dislocation density ; Figure of merit ; Gas expansion ; Grain boundaries ; Materials science ; pores ; Recrystallization ; Relaxation time ; SnTe ; Thermal conductivity ; Thermoelectricity ; thermoelectrics</subject><ispartof>Advanced functional materials, 2021-08, Vol.31 (31), p.n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3174-6967e5655a729ecff049a539b82d3b3f6512c760563fa44465999927f8759fe23</citedby><cites>FETCH-LOGICAL-c3174-6967e5655a729ecff049a539b82d3b3f6512c760563fa44465999927f8759fe23</cites><orcidid>0000-0003-4906-9183</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202101554$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202101554$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Guo, Fengkai</creatorcontrib><creatorcontrib>Cui, Bo</creatorcontrib><creatorcontrib>Li, Chun</creatorcontrib><creatorcontrib>Wang, Yumei</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Zhang, Xinghong</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Sui, Jiehe</creatorcontrib><title>Ultrahigh Thermoelectric Performance in Environmentally Friendly SnTe Achieved through Stress‐Induced Lotus‐Seedpod‐Like Grain Boundaries</title><title>Advanced functional materials</title><description>In an effort to improve the thermoelectric performance of the environmentally friendly SnTe, here, a multilevel structure composed of “lotus‐seedpod‐like” grain boundaries, dense dislocations, and nanopores is innovatively constructed, which synergistically reduces the sound velocity and the phonon relaxation time, resulting in ultralow lattice thermal conductivity throughout a wide temperature range. An ultrahigh figure of merit, ZT, of ≈1.7 and an unprecedented average ZT of ≈1 from 300 to 873 K are obtained. In contrast to the common pore‐forming method of volatilization, the strategy of stress‐induced recrystallization and gas expansion cogenerating interfacial pores that is used here, is believed to be more widely applicable for many other materials, which opens up a new avenue for improving thermoelectric performance.
A “lotus‐seedpod‐like” grain boundary is constructed utilizing stress‐induced recystallization and trapped gas expansion in Mn‐doped SnTe. This structure decouples the transmission of charge carriers and phonons. A superhigh ZT of ≈1.7 at 873 K and a record ZTave of ≈1 between 300 and 873 K are realized.</description><subject>Acoustic velocity</subject><subject>dislocation</subject><subject>Dislocation density</subject><subject>Figure of merit</subject><subject>Gas expansion</subject><subject>Grain boundaries</subject><subject>Materials science</subject><subject>pores</subject><subject>Recrystallization</subject><subject>Relaxation time</subject><subject>SnTe</subject><subject>Thermal conductivity</subject><subject>Thermoelectricity</subject><subject>thermoelectrics</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEuXnyjkS5xbbie3kWAotSEUgtZW4Ra6zJobELnZS1BtvAM_Ik-CqCI7sZcfyzLfSRNEZRgOMELkQpWoGBBGMMKXpXtTDDLN-gki2_6vx42F05P0zQpjzJO1FH4u6daLST1U8r8A1FmqQrdMyfgCnrGuEkRBrE1-btXbWNGBaUdebeOw0mDKImZlDPJSVhjWUcVs52wXYrHXg_df7560pOxk-prbttu8ZQLmyZVBT_QLxxIkAv7SdKUUg-pPoQInaw-nPPo4W4-v56KY_vZ_cjobTvkwwT_ssZxwoo1RwkoNUCqW5oEm-zEiZLBPFKCaSM0RZokSapozmYQhXGae5ApIcR-c77srZ1w58WzzbzplwsiCU8izjKWPBNdi5pLPeO1DFyulGuE2BUbEtvdiWXvyWHgL5LvCma9j84y6GV-O7v-w3QbmKtg</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Guo, Fengkai</creator><creator>Cui, Bo</creator><creator>Li, Chun</creator><creator>Wang, Yumei</creator><creator>Cao, Jian</creator><creator>Zhang, Xinghong</creator><creator>Ren, Zhifeng</creator><creator>Cai, Wei</creator><creator>Sui, Jiehe</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4906-9183</orcidid></search><sort><creationdate>20210801</creationdate><title>Ultrahigh Thermoelectric Performance in Environmentally Friendly SnTe Achieved through Stress‐Induced Lotus‐Seedpod‐Like Grain Boundaries</title><author>Guo, Fengkai ; Cui, Bo ; Li, Chun ; Wang, Yumei ; Cao, Jian ; Zhang, Xinghong ; Ren, Zhifeng ; Cai, Wei ; Sui, Jiehe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3174-6967e5655a729ecff049a539b82d3b3f6512c760563fa44465999927f8759fe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustic velocity</topic><topic>dislocation</topic><topic>Dislocation density</topic><topic>Figure of merit</topic><topic>Gas expansion</topic><topic>Grain boundaries</topic><topic>Materials science</topic><topic>pores</topic><topic>Recrystallization</topic><topic>Relaxation time</topic><topic>SnTe</topic><topic>Thermal conductivity</topic><topic>Thermoelectricity</topic><topic>thermoelectrics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Fengkai</creatorcontrib><creatorcontrib>Cui, Bo</creatorcontrib><creatorcontrib>Li, Chun</creatorcontrib><creatorcontrib>Wang, Yumei</creatorcontrib><creatorcontrib>Cao, Jian</creatorcontrib><creatorcontrib>Zhang, Xinghong</creatorcontrib><creatorcontrib>Ren, Zhifeng</creatorcontrib><creatorcontrib>Cai, Wei</creatorcontrib><creatorcontrib>Sui, Jiehe</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Fengkai</au><au>Cui, Bo</au><au>Li, Chun</au><au>Wang, Yumei</au><au>Cao, Jian</au><au>Zhang, Xinghong</au><au>Ren, Zhifeng</au><au>Cai, Wei</au><au>Sui, Jiehe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrahigh Thermoelectric Performance in Environmentally Friendly SnTe Achieved through Stress‐Induced Lotus‐Seedpod‐Like Grain Boundaries</atitle><jtitle>Advanced functional materials</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>31</volume><issue>31</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>In an effort to improve the thermoelectric performance of the environmentally friendly SnTe, here, a multilevel structure composed of “lotus‐seedpod‐like” grain boundaries, dense dislocations, and nanopores is innovatively constructed, which synergistically reduces the sound velocity and the phonon relaxation time, resulting in ultralow lattice thermal conductivity throughout a wide temperature range. An ultrahigh figure of merit, ZT, of ≈1.7 and an unprecedented average ZT of ≈1 from 300 to 873 K are obtained. In contrast to the common pore‐forming method of volatilization, the strategy of stress‐induced recrystallization and gas expansion cogenerating interfacial pores that is used here, is believed to be more widely applicable for many other materials, which opens up a new avenue for improving thermoelectric performance.
A “lotus‐seedpod‐like” grain boundary is constructed utilizing stress‐induced recystallization and trapped gas expansion in Mn‐doped SnTe. This structure decouples the transmission of charge carriers and phonons. A superhigh ZT of ≈1.7 at 873 K and a record ZTave of ≈1 between 300 and 873 K are realized.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202101554</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4906-9183</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2021-08, Vol.31 (31), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_2557887466 |
source | Access via Wiley Online Library |
subjects | Acoustic velocity dislocation Dislocation density Figure of merit Gas expansion Grain boundaries Materials science pores Recrystallization Relaxation time SnTe Thermal conductivity Thermoelectricity thermoelectrics |
title | Ultrahigh Thermoelectric Performance in Environmentally Friendly SnTe Achieved through Stress‐Induced Lotus‐Seedpod‐Like Grain Boundaries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T12%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrahigh%20Thermoelectric%20Performance%20in%20Environmentally%20Friendly%20SnTe%20Achieved%20through%20Stress%E2%80%90Induced%20Lotus%E2%80%90Seedpod%E2%80%90Like%20Grain%20Boundaries&rft.jtitle=Advanced%20functional%20materials&rft.au=Guo,%20Fengkai&rft.date=2021-08-01&rft.volume=31&rft.issue=31&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202101554&rft_dat=%3Cproquest_cross%3E2557887466%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557887466&rft_id=info:pmid/&rfr_iscdi=true |