Numerical Simulation of Transpiration Cooling for a High-Speed Vehicle with Substructure
This paper presents a numerical model that assesses the effect of applying transpiration cooling to both the outer wall and the substructure of a high-speed flight vehicle. The porous impulse response analysis for transpiration cooling evaluation (PIRATE) code has been extended and validated to acco...
Gespeichert in:
Veröffentlicht in: | AIAA journal 2021-08, Vol.59 (8), p.3043-3053 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3053 |
---|---|
container_issue | 8 |
container_start_page | 3043 |
container_title | AIAA journal |
container_volume | 59 |
creator | Naved, Imran Hermann, Tobias McGilvray, Matthew |
description | This paper presents a numerical model that assesses the effect of applying transpiration cooling to both the outer wall and the substructure of a high-speed flight vehicle. The porous impulse response analysis for transpiration cooling evaluation (PIRATE) code has been extended and validated to account for quasi-two-dimensional lateral heat conduction effects, thereby allowing for analysis of more complex geometries. This enables very fast calculations of the two-dimensional transient temperature response of a transpiration-cooled thermal protection system suitable for first-order systems studies. To solve for the transpiration-cooled outer wall and a two-dimensional solid substructure, PIRATE has been coupled with the commercial finite element package COMSOL. This enables modeling of the longer-duration thermal effects of the integrated heat load over a flight trajectory. Transpiration cooling using helium coolant has been applied to a wing leading-edge model with an aluminum substructure. Carbon–carbon ceramic composite and the ultra-high-temperature ceramic Zirconium diboride (ZrB2) are chosen as candidate materials. Results for the substructure temperature history for the space shuttle reentry trajectory are obtained, showing that transpiration cooling can lead to a 35% reduction in peak substructure temperature and a 65% reduction in thermal gradients. |
doi_str_mv | 10.2514/1.J059771 |
format | Article |
fullrecord | <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_2557873912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557873912</sourcerecordid><originalsourceid>FETCH-LOGICAL-a323t-9c40a08cfc113ff6ed43c4b8a4afd189a80699cd13c3300e1115920bf747d3b43</originalsourceid><addsrcrecordid>eNpl0M9LwzAUB_AgCs7pwf8gIAgeOvPyY02PMpxThh42ZbeSpsmW0TU1aRH_eysdePD0eI8P3wdfhK6BTKgAfg-TFyKyNIUTNALBWMKk2JyiESEEEuCCnqOLGPf9RlMJI7R57Q4mOK0qvHKHrlKt8zX2Fq-DqmPjwnCYeV-5eoutD1jhhdvuklVjTIk_zM7pyuAv1-7wqitiGzrddsFcojOrqmiujnOM3ueP69kiWb49Pc8elolilLVJpjlRRGqrAZi1U1NypnkhFVe2BJkpSaZZpktgmjFCDACIjJLCpjwtWcHZGN0MuU3wn52Jbb73Xaj7lzkVIpUpy4D26m5QOvgYg7F5E9xBhe8cSP5bXA75sbje3g5WOaX-0v7DH-NGa4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557873912</pqid></control><display><type>article</type><title>Numerical Simulation of Transpiration Cooling for a High-Speed Vehicle with Substructure</title><source>Alma/SFX Local Collection</source><creator>Naved, Imran ; Hermann, Tobias ; McGilvray, Matthew</creator><creatorcontrib>Naved, Imran ; Hermann, Tobias ; McGilvray, Matthew</creatorcontrib><description>This paper presents a numerical model that assesses the effect of applying transpiration cooling to both the outer wall and the substructure of a high-speed flight vehicle. The porous impulse response analysis for transpiration cooling evaluation (PIRATE) code has been extended and validated to account for quasi-two-dimensional lateral heat conduction effects, thereby allowing for analysis of more complex geometries. This enables very fast calculations of the two-dimensional transient temperature response of a transpiration-cooled thermal protection system suitable for first-order systems studies. To solve for the transpiration-cooled outer wall and a two-dimensional solid substructure, PIRATE has been coupled with the commercial finite element package COMSOL. This enables modeling of the longer-duration thermal effects of the integrated heat load over a flight trajectory. Transpiration cooling using helium coolant has been applied to a wing leading-edge model with an aluminum substructure. Carbon–carbon ceramic composite and the ultra-high-temperature ceramic Zirconium diboride (ZrB2) are chosen as candidate materials. Results for the substructure temperature history for the space shuttle reentry trajectory are obtained, showing that transpiration cooling can lead to a 35% reduction in peak substructure temperature and a 65% reduction in thermal gradients.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J059771</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aluminum ; Conduction heating ; Conductive heat transfer ; Cooling rate ; Flight vehicles ; Heat conductivity ; Heat transfer ; High speed ; High temperature ; Impulse response ; Materials selection ; Mathematical models ; Numerical models ; Piracy ; Porous materials ; Radiation ; Reduction ; Reentry trajectories ; Refractory materials ; Sweat cooling ; Temperature ; Temperature effects ; Temperature gradients ; Thermal protection ; Transpiration ; Vehicles ; Zirconium compounds</subject><ispartof>AIAA journal, 2021-08, Vol.59 (8), p.3043-3053</ispartof><rights>Copyright © 2021 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2021 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a323t-9c40a08cfc113ff6ed43c4b8a4afd189a80699cd13c3300e1115920bf747d3b43</citedby><cites>FETCH-LOGICAL-a323t-9c40a08cfc113ff6ed43c4b8a4afd189a80699cd13c3300e1115920bf747d3b43</cites><orcidid>0000-0002-0622-7738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Naved, Imran</creatorcontrib><creatorcontrib>Hermann, Tobias</creatorcontrib><creatorcontrib>McGilvray, Matthew</creatorcontrib><title>Numerical Simulation of Transpiration Cooling for a High-Speed Vehicle with Substructure</title><title>AIAA journal</title><description>This paper presents a numerical model that assesses the effect of applying transpiration cooling to both the outer wall and the substructure of a high-speed flight vehicle. The porous impulse response analysis for transpiration cooling evaluation (PIRATE) code has been extended and validated to account for quasi-two-dimensional lateral heat conduction effects, thereby allowing for analysis of more complex geometries. This enables very fast calculations of the two-dimensional transient temperature response of a transpiration-cooled thermal protection system suitable for first-order systems studies. To solve for the transpiration-cooled outer wall and a two-dimensional solid substructure, PIRATE has been coupled with the commercial finite element package COMSOL. This enables modeling of the longer-duration thermal effects of the integrated heat load over a flight trajectory. Transpiration cooling using helium coolant has been applied to a wing leading-edge model with an aluminum substructure. Carbon–carbon ceramic composite and the ultra-high-temperature ceramic Zirconium diboride (ZrB2) are chosen as candidate materials. Results for the substructure temperature history for the space shuttle reentry trajectory are obtained, showing that transpiration cooling can lead to a 35% reduction in peak substructure temperature and a 65% reduction in thermal gradients.</description><subject>Aluminum</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Cooling rate</subject><subject>Flight vehicles</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>High speed</subject><subject>High temperature</subject><subject>Impulse response</subject><subject>Materials selection</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Piracy</subject><subject>Porous materials</subject><subject>Radiation</subject><subject>Reduction</subject><subject>Reentry trajectories</subject><subject>Refractory materials</subject><subject>Sweat cooling</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><subject>Thermal protection</subject><subject>Transpiration</subject><subject>Vehicles</subject><subject>Zirconium compounds</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpl0M9LwzAUB_AgCs7pwf8gIAgeOvPyY02PMpxThh42ZbeSpsmW0TU1aRH_eysdePD0eI8P3wdfhK6BTKgAfg-TFyKyNIUTNALBWMKk2JyiESEEEuCCnqOLGPf9RlMJI7R57Q4mOK0qvHKHrlKt8zX2Fq-DqmPjwnCYeV-5eoutD1jhhdvuklVjTIk_zM7pyuAv1-7wqitiGzrddsFcojOrqmiujnOM3ueP69kiWb49Pc8elolilLVJpjlRRGqrAZi1U1NypnkhFVe2BJkpSaZZpktgmjFCDACIjJLCpjwtWcHZGN0MuU3wn52Jbb73Xaj7lzkVIpUpy4D26m5QOvgYg7F5E9xBhe8cSP5bXA75sbje3g5WOaX-0v7DH-NGa4k</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Naved, Imran</creator><creator>Hermann, Tobias</creator><creator>McGilvray, Matthew</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0622-7738</orcidid></search><sort><creationdate>20210801</creationdate><title>Numerical Simulation of Transpiration Cooling for a High-Speed Vehicle with Substructure</title><author>Naved, Imran ; Hermann, Tobias ; McGilvray, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a323t-9c40a08cfc113ff6ed43c4b8a4afd189a80699cd13c3300e1115920bf747d3b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Cooling rate</topic><topic>Flight vehicles</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>High speed</topic><topic>High temperature</topic><topic>Impulse response</topic><topic>Materials selection</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Piracy</topic><topic>Porous materials</topic><topic>Radiation</topic><topic>Reduction</topic><topic>Reentry trajectories</topic><topic>Refractory materials</topic><topic>Sweat cooling</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><topic>Thermal protection</topic><topic>Transpiration</topic><topic>Vehicles</topic><topic>Zirconium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naved, Imran</creatorcontrib><creatorcontrib>Hermann, Tobias</creatorcontrib><creatorcontrib>McGilvray, Matthew</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naved, Imran</au><au>Hermann, Tobias</au><au>McGilvray, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Transpiration Cooling for a High-Speed Vehicle with Substructure</atitle><jtitle>AIAA journal</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>59</volume><issue>8</issue><spage>3043</spage><epage>3053</epage><pages>3043-3053</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>This paper presents a numerical model that assesses the effect of applying transpiration cooling to both the outer wall and the substructure of a high-speed flight vehicle. The porous impulse response analysis for transpiration cooling evaluation (PIRATE) code has been extended and validated to account for quasi-two-dimensional lateral heat conduction effects, thereby allowing for analysis of more complex geometries. This enables very fast calculations of the two-dimensional transient temperature response of a transpiration-cooled thermal protection system suitable for first-order systems studies. To solve for the transpiration-cooled outer wall and a two-dimensional solid substructure, PIRATE has been coupled with the commercial finite element package COMSOL. This enables modeling of the longer-duration thermal effects of the integrated heat load over a flight trajectory. Transpiration cooling using helium coolant has been applied to a wing leading-edge model with an aluminum substructure. Carbon–carbon ceramic composite and the ultra-high-temperature ceramic Zirconium diboride (ZrB2) are chosen as candidate materials. Results for the substructure temperature history for the space shuttle reentry trajectory are obtained, showing that transpiration cooling can lead to a 35% reduction in peak substructure temperature and a 65% reduction in thermal gradients.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J059771</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0622-7738</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1452 |
ispartof | AIAA journal, 2021-08, Vol.59 (8), p.3043-3053 |
issn | 0001-1452 1533-385X |
language | eng |
recordid | cdi_proquest_journals_2557873912 |
source | Alma/SFX Local Collection |
subjects | Aluminum Conduction heating Conductive heat transfer Cooling rate Flight vehicles Heat conductivity Heat transfer High speed High temperature Impulse response Materials selection Mathematical models Numerical models Piracy Porous materials Radiation Reduction Reentry trajectories Refractory materials Sweat cooling Temperature Temperature effects Temperature gradients Thermal protection Transpiration Vehicles Zirconium compounds |
title | Numerical Simulation of Transpiration Cooling for a High-Speed Vehicle with Substructure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Transpiration%20Cooling%20for%20a%20High-Speed%20Vehicle%20with%20Substructure&rft.jtitle=AIAA%20journal&rft.au=Naved,%20Imran&rft.date=2021-08-01&rft.volume=59&rft.issue=8&rft.spage=3043&rft.epage=3053&rft.pages=3043-3053&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J059771&rft_dat=%3Cproquest_aiaa_%3E2557873912%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557873912&rft_id=info:pmid/&rfr_iscdi=true |