Numerical Simulation of Transpiration Cooling for a High-Speed Vehicle with Substructure

This paper presents a numerical model that assesses the effect of applying transpiration cooling to both the outer wall and the substructure of a high-speed flight vehicle. The porous impulse response analysis for transpiration cooling evaluation (PIRATE) code has been extended and validated to acco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIAA journal 2021-08, Vol.59 (8), p.3043-3053
Hauptverfasser: Naved, Imran, Hermann, Tobias, McGilvray, Matthew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3053
container_issue 8
container_start_page 3043
container_title AIAA journal
container_volume 59
creator Naved, Imran
Hermann, Tobias
McGilvray, Matthew
description This paper presents a numerical model that assesses the effect of applying transpiration cooling to both the outer wall and the substructure of a high-speed flight vehicle. The porous impulse response analysis for transpiration cooling evaluation (PIRATE) code has been extended and validated to account for quasi-two-dimensional lateral heat conduction effects, thereby allowing for analysis of more complex geometries. This enables very fast calculations of the two-dimensional transient temperature response of a transpiration-cooled thermal protection system suitable for first-order systems studies. To solve for the transpiration-cooled outer wall and a two-dimensional solid substructure, PIRATE has been coupled with the commercial finite element package COMSOL. This enables modeling of the longer-duration thermal effects of the integrated heat load over a flight trajectory. Transpiration cooling using helium coolant has been applied to a wing leading-edge model with an aluminum substructure. Carbon–carbon ceramic composite and the ultra-high-temperature ceramic Zirconium diboride (ZrB2) are chosen as candidate materials. Results for the substructure temperature history for the space shuttle reentry trajectory are obtained, showing that transpiration cooling can lead to a 35% reduction in peak substructure temperature and a 65% reduction in thermal gradients.
doi_str_mv 10.2514/1.J059771
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_2557873912</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2557873912</sourcerecordid><originalsourceid>FETCH-LOGICAL-a323t-9c40a08cfc113ff6ed43c4b8a4afd189a80699cd13c3300e1115920bf747d3b43</originalsourceid><addsrcrecordid>eNpl0M9LwzAUB_AgCs7pwf8gIAgeOvPyY02PMpxThh42ZbeSpsmW0TU1aRH_eysdePD0eI8P3wdfhK6BTKgAfg-TFyKyNIUTNALBWMKk2JyiESEEEuCCnqOLGPf9RlMJI7R57Q4mOK0qvHKHrlKt8zX2Fq-DqmPjwnCYeV-5eoutD1jhhdvuklVjTIk_zM7pyuAv1-7wqitiGzrddsFcojOrqmiujnOM3ueP69kiWb49Pc8elolilLVJpjlRRGqrAZi1U1NypnkhFVe2BJkpSaZZpktgmjFCDACIjJLCpjwtWcHZGN0MuU3wn52Jbb73Xaj7lzkVIpUpy4D26m5QOvgYg7F5E9xBhe8cSP5bXA75sbje3g5WOaX-0v7DH-NGa4k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557873912</pqid></control><display><type>article</type><title>Numerical Simulation of Transpiration Cooling for a High-Speed Vehicle with Substructure</title><source>Alma/SFX Local Collection</source><creator>Naved, Imran ; Hermann, Tobias ; McGilvray, Matthew</creator><creatorcontrib>Naved, Imran ; Hermann, Tobias ; McGilvray, Matthew</creatorcontrib><description>This paper presents a numerical model that assesses the effect of applying transpiration cooling to both the outer wall and the substructure of a high-speed flight vehicle. The porous impulse response analysis for transpiration cooling evaluation (PIRATE) code has been extended and validated to account for quasi-two-dimensional lateral heat conduction effects, thereby allowing for analysis of more complex geometries. This enables very fast calculations of the two-dimensional transient temperature response of a transpiration-cooled thermal protection system suitable for first-order systems studies. To solve for the transpiration-cooled outer wall and a two-dimensional solid substructure, PIRATE has been coupled with the commercial finite element package COMSOL. This enables modeling of the longer-duration thermal effects of the integrated heat load over a flight trajectory. Transpiration cooling using helium coolant has been applied to a wing leading-edge model with an aluminum substructure. Carbon–carbon ceramic composite and the ultra-high-temperature ceramic Zirconium diboride (ZrB2) are chosen as candidate materials. Results for the substructure temperature history for the space shuttle reentry trajectory are obtained, showing that transpiration cooling can lead to a 35% reduction in peak substructure temperature and a 65% reduction in thermal gradients.</description><identifier>ISSN: 0001-1452</identifier><identifier>EISSN: 1533-385X</identifier><identifier>DOI: 10.2514/1.J059771</identifier><language>eng</language><publisher>Virginia: American Institute of Aeronautics and Astronautics</publisher><subject>Aluminum ; Conduction heating ; Conductive heat transfer ; Cooling rate ; Flight vehicles ; Heat conductivity ; Heat transfer ; High speed ; High temperature ; Impulse response ; Materials selection ; Mathematical models ; Numerical models ; Piracy ; Porous materials ; Radiation ; Reduction ; Reentry trajectories ; Refractory materials ; Sweat cooling ; Temperature ; Temperature effects ; Temperature gradients ; Thermal protection ; Transpiration ; Vehicles ; Zirconium compounds</subject><ispartof>AIAA journal, 2021-08, Vol.59 (8), p.3043-3053</ispartof><rights>Copyright © 2021 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the eISSN to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2021 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-385X to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a323t-9c40a08cfc113ff6ed43c4b8a4afd189a80699cd13c3300e1115920bf747d3b43</citedby><cites>FETCH-LOGICAL-a323t-9c40a08cfc113ff6ed43c4b8a4afd189a80699cd13c3300e1115920bf747d3b43</cites><orcidid>0000-0002-0622-7738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Naved, Imran</creatorcontrib><creatorcontrib>Hermann, Tobias</creatorcontrib><creatorcontrib>McGilvray, Matthew</creatorcontrib><title>Numerical Simulation of Transpiration Cooling for a High-Speed Vehicle with Substructure</title><title>AIAA journal</title><description>This paper presents a numerical model that assesses the effect of applying transpiration cooling to both the outer wall and the substructure of a high-speed flight vehicle. The porous impulse response analysis for transpiration cooling evaluation (PIRATE) code has been extended and validated to account for quasi-two-dimensional lateral heat conduction effects, thereby allowing for analysis of more complex geometries. This enables very fast calculations of the two-dimensional transient temperature response of a transpiration-cooled thermal protection system suitable for first-order systems studies. To solve for the transpiration-cooled outer wall and a two-dimensional solid substructure, PIRATE has been coupled with the commercial finite element package COMSOL. This enables modeling of the longer-duration thermal effects of the integrated heat load over a flight trajectory. Transpiration cooling using helium coolant has been applied to a wing leading-edge model with an aluminum substructure. Carbon–carbon ceramic composite and the ultra-high-temperature ceramic Zirconium diboride (ZrB2) are chosen as candidate materials. Results for the substructure temperature history for the space shuttle reentry trajectory are obtained, showing that transpiration cooling can lead to a 35% reduction in peak substructure temperature and a 65% reduction in thermal gradients.</description><subject>Aluminum</subject><subject>Conduction heating</subject><subject>Conductive heat transfer</subject><subject>Cooling rate</subject><subject>Flight vehicles</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>High speed</subject><subject>High temperature</subject><subject>Impulse response</subject><subject>Materials selection</subject><subject>Mathematical models</subject><subject>Numerical models</subject><subject>Piracy</subject><subject>Porous materials</subject><subject>Radiation</subject><subject>Reduction</subject><subject>Reentry trajectories</subject><subject>Refractory materials</subject><subject>Sweat cooling</subject><subject>Temperature</subject><subject>Temperature effects</subject><subject>Temperature gradients</subject><subject>Thermal protection</subject><subject>Transpiration</subject><subject>Vehicles</subject><subject>Zirconium compounds</subject><issn>0001-1452</issn><issn>1533-385X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpl0M9LwzAUB_AgCs7pwf8gIAgeOvPyY02PMpxThh42ZbeSpsmW0TU1aRH_eysdePD0eI8P3wdfhK6BTKgAfg-TFyKyNIUTNALBWMKk2JyiESEEEuCCnqOLGPf9RlMJI7R57Q4mOK0qvHKHrlKt8zX2Fq-DqmPjwnCYeV-5eoutD1jhhdvuklVjTIk_zM7pyuAv1-7wqitiGzrddsFcojOrqmiujnOM3ueP69kiWb49Pc8elolilLVJpjlRRGqrAZi1U1NypnkhFVe2BJkpSaZZpktgmjFCDACIjJLCpjwtWcHZGN0MuU3wn52Jbb73Xaj7lzkVIpUpy4D26m5QOvgYg7F5E9xBhe8cSP5bXA75sbje3g5WOaX-0v7DH-NGa4k</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Naved, Imran</creator><creator>Hermann, Tobias</creator><creator>McGilvray, Matthew</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0622-7738</orcidid></search><sort><creationdate>20210801</creationdate><title>Numerical Simulation of Transpiration Cooling for a High-Speed Vehicle with Substructure</title><author>Naved, Imran ; Hermann, Tobias ; McGilvray, Matthew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a323t-9c40a08cfc113ff6ed43c4b8a4afd189a80699cd13c3300e1115920bf747d3b43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum</topic><topic>Conduction heating</topic><topic>Conductive heat transfer</topic><topic>Cooling rate</topic><topic>Flight vehicles</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>High speed</topic><topic>High temperature</topic><topic>Impulse response</topic><topic>Materials selection</topic><topic>Mathematical models</topic><topic>Numerical models</topic><topic>Piracy</topic><topic>Porous materials</topic><topic>Radiation</topic><topic>Reduction</topic><topic>Reentry trajectories</topic><topic>Refractory materials</topic><topic>Sweat cooling</topic><topic>Temperature</topic><topic>Temperature effects</topic><topic>Temperature gradients</topic><topic>Thermal protection</topic><topic>Transpiration</topic><topic>Vehicles</topic><topic>Zirconium compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naved, Imran</creatorcontrib><creatorcontrib>Hermann, Tobias</creatorcontrib><creatorcontrib>McGilvray, Matthew</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>AIAA journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naved, Imran</au><au>Hermann, Tobias</au><au>McGilvray, Matthew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical Simulation of Transpiration Cooling for a High-Speed Vehicle with Substructure</atitle><jtitle>AIAA journal</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>59</volume><issue>8</issue><spage>3043</spage><epage>3053</epage><pages>3043-3053</pages><issn>0001-1452</issn><eissn>1533-385X</eissn><abstract>This paper presents a numerical model that assesses the effect of applying transpiration cooling to both the outer wall and the substructure of a high-speed flight vehicle. The porous impulse response analysis for transpiration cooling evaluation (PIRATE) code has been extended and validated to account for quasi-two-dimensional lateral heat conduction effects, thereby allowing for analysis of more complex geometries. This enables very fast calculations of the two-dimensional transient temperature response of a transpiration-cooled thermal protection system suitable for first-order systems studies. To solve for the transpiration-cooled outer wall and a two-dimensional solid substructure, PIRATE has been coupled with the commercial finite element package COMSOL. This enables modeling of the longer-duration thermal effects of the integrated heat load over a flight trajectory. Transpiration cooling using helium coolant has been applied to a wing leading-edge model with an aluminum substructure. Carbon–carbon ceramic composite and the ultra-high-temperature ceramic Zirconium diboride (ZrB2) are chosen as candidate materials. Results for the substructure temperature history for the space shuttle reentry trajectory are obtained, showing that transpiration cooling can lead to a 35% reduction in peak substructure temperature and a 65% reduction in thermal gradients.</abstract><cop>Virginia</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.J059771</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0622-7738</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0001-1452
ispartof AIAA journal, 2021-08, Vol.59 (8), p.3043-3053
issn 0001-1452
1533-385X
language eng
recordid cdi_proquest_journals_2557873912
source Alma/SFX Local Collection
subjects Aluminum
Conduction heating
Conductive heat transfer
Cooling rate
Flight vehicles
Heat conductivity
Heat transfer
High speed
High temperature
Impulse response
Materials selection
Mathematical models
Numerical models
Piracy
Porous materials
Radiation
Reduction
Reentry trajectories
Refractory materials
Sweat cooling
Temperature
Temperature effects
Temperature gradients
Thermal protection
Transpiration
Vehicles
Zirconium compounds
title Numerical Simulation of Transpiration Cooling for a High-Speed Vehicle with Substructure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20Simulation%20of%20Transpiration%20Cooling%20for%20a%20High-Speed%20Vehicle%20with%20Substructure&rft.jtitle=AIAA%20journal&rft.au=Naved,%20Imran&rft.date=2021-08-01&rft.volume=59&rft.issue=8&rft.spage=3043&rft.epage=3053&rft.pages=3043-3053&rft.issn=0001-1452&rft.eissn=1533-385X&rft_id=info:doi/10.2514/1.J059771&rft_dat=%3Cproquest_aiaa_%3E2557873912%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2557873912&rft_id=info:pmid/&rfr_iscdi=true